首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genomewide linkage studies of type 1 diabetes (or insulin-dependent diabetes mellitus [IDDM]) indicate that several unlinked susceptibility loci can explain the clustering of the disease in families. One such locus has been mapped to chromosome 11q13 (IDDM4). In the present report we have analyzed 707 affected sib pairs, obtaining a peak multipoint maximum LOD score (MLS) of 2.7 (lambda(s)=1.09) with linkage (MLS>=0.7) extending over a 15-cM region. The problem is, therefore, to fine map the locus to permit structural analysis of positional candidate genes. In a two-stage approach, we first scanned the 15-cM linked region for increased or decreased transmission, from heterozygous parents to affected siblings in 340 families, of the three most common alleles of each of 12 microsatellite loci. One of the 36 alleles showed decreased transmission (50% expected, 45.1% observed [P=.02, corrected P=.72]) at marker D11S1917. Analysis of an additional 1,702 families provided further support for negative transmission (48%) of D11S1917 allele 3 to affected offspring and positive transmission (55%) to unaffected siblings (test of heterogeneity P=3x10-4, corrected P=. 01]). A second polymorphic marker, H0570polyA, was isolated from a cosmid clone containing D11S1917, and genotyping of 2,042 families revealed strong linkage disequilibrium between the two markers (15 kb apart), with a specific haplotype, D11S1917*03-H0570polyA*02, showing decreased transmission (46.4%) to affected offspring and increased transmission (56.6%) to unaffected siblings (test of heterogeneity P=1.5x10-6, corrected P=4.3x10-4). These results not only provide sufficient justification for analysis of the gene content of the D11S1917 region for positional candidates but also show that, in the mapping of genes for common multifactorial diseases, analysis of both affected and unaffected siblings is of value and that both predisposing and nonpredisposing alleles should be anticipated.  相似文献   

2.
Previous studies have identified a susceptibility region for insulin-dependent (type 1) diabetes mellitus on chromosome 11q13 (IDDM4). In this study, 15 polymorphic markers were analyzed for 382 affected sibpair (ASP) families with type 1 diabetes. Our analyses provided additional evidence for linkage for IDDM4 (a peak LOD score of 3.4 at D11S913). The markers with strong linkage evidence are located within an interval of approximately 6 cM between D11S4205 and GALN. We also identified polymorphisms in two candidate genes, Fas-associated death domain protein (FADD) and galanin (GALN). Analyses of the data by transmission/disequilibrium test (TDT) and extended TDT (ETDT) did not provide any evidence for association/linkage with these candidate genes. However, ETDT did reveal significant association/linkage with the marker D11S987 (P=0.0004) within the IDDM4 interval defined by ASP analyses, suggesting that IDDM4 may be in the close proximity of D11S987.  相似文献   

3.
4.
Familial exudative vitreoretinopathy (FEVR) is a hereditary eye disorder that affects both the retina and vitreous body. Autosomal recessive FEVR was diagnosed in multiple individuals from three consanguineous families of European descent. A candidate-locus-directed genome scan shows linkage to the region on chromosome 11q flanked by markers D11S905 and D11S1314. The maximum LOD score of 3.6 at theta =0 is obtained with marker D11S987. Haplotype analysis confirms that the critical region is the 22-cM (311-Mb) interval flanked by markers D11S905 and D11S1314. This region contains LRP5 but not FZD4; mutations in both of these genes cause autosomal dominant FEVR. Sequencing of LRP5 shows, in all three families, homozygous mutations R570Q, R752G, and E1367K. This suggests that mutations in this gene can cause autosomal recessive as well as autosomal dominant FEVR.  相似文献   

5.
The genomic region surrounding the TNF locus on human chromosome 6 has previously been associated with typhoid fever in Vietnam (Dunstan et al. in J Infect Dis 183:261–268, 2001). We used a haplotypic approach to understand this association further. Eighty single nucleotide polymorphisms (SNPs) spanning a 150 kb region were genotyped in 95 Vietnamese individuals (typhoid case/mother/father trios). A subset of data from 33 SNPs with a minor allele frequency of >4.3% was used to construct haplotypes. Fifteen SNPs, which tagged the 42 constructed haplotypes were selected. The haplotype tagging SNPs (T1–T15) were genotyped in 380 confirmed typhoid cases and 380 Vietnamese ethnically matched controls. Allelic frequencies of seven SNPs (T1, T2, T3, T5, T6, T7, T8) were significantly different between typhoid cases and controls. Logistic regression results support the hypothesis that there is just one signal associated with disease at this locus. Haplotype-based analysis of the tag SNPs provided positive evidence of association with typhoid (posterior probability 0.821). The analysis highlighted a low-risk cluster of haplotypes that each carry the minor allele of T1 or T7, but not both, and otherwise carry the combination of alleles *12122*1111 at T1–T11, further supporting the one associated signal hypothesis. Finally, individuals that carry the typhoid fever protective haplotype *12122*1111 also produce a relatively low TNF-α response to LPS.  相似文献   

6.
Type 2 diabetes (T2D) is characterized by impaired insulin secretion, insulin insensitivity and decreased beta-cell mass. Multiple genes contribute to T2D. The chromosome 12q13.1 region is in linkage to T2D in different populations, including our Italian dataset. CHOP is a candidate gene for the linkage, as it is located in the chromosome 12q13.1 region, and may contribute to T2D by increasing beta-cell apoptosis susceptibility and by impairing insulin sensitivity. Our goal was to identify any potential CHOP gene variants contributing to T2D in our Italian early-onset T2D families, which show linkage to the CHOP region. We directly sequenced the CHOP gene in 28 Italian probands of the linked T2D families and in 115 control subjects. We performed genotype and haplotype association tests with T2D of the identified single nucleotide polymorphisms (SNPs). We performed model-free and parametric association haplotype tests with T2D. We identified three SNPs [5'UTR-c.279T > C, 5'UTR-c.120A > G and + nt30C > T (F10F)] in CHOP. These SNPs are in complete linkage disequilibrium. The genotype association test showed an association trend with T2D of TT (F10F) and AG (-c.120A > G). The haplotype association test provided significant results for the haplotypes T/C (frequency = 0.33) and C/T (frequency = 0.01) (at 5'UTR-c.279T > C and + nt30C > T, respectively) under non-parametric analysis (P-value = 0.0000), recessive model (P-value = 0.0000) and additive model (P-value = 0.0014). Our data show that CHOP described haplotypes T/C and C/T, as an additive and as a homozygous variant, contribute significantly to T2D in our Italian early-onset group. We conclude that the CHOP T/C and C/T haplotype contributes to our T2D linkage signal on chromosome 12q13.1.  相似文献   

7.
Graves disease (GD) is a common autoimmune thyroid disorder that is inherited as a complex multigenic trait. By using a single microsatellite marker at each locus, we screened the type 1 diabetes loci IDDM4, IDDM5, IDDM6, IDDM8, and IDDM10 and the fucosyltransferase-2 locus for linkage in sib pairs with GD. This showed a two-point nonparametric linkage (NPL) score of 1.57 (P=.06) at the IDDM6 marker D18S41, but NPL scores were <1.0 at the other five loci. Thus, the investigation of the IDDM6 locus was extended by genotyping 11 microsatellite markers spanning 48 cM across chromosome 18q12-q22 in 81 sib pairs affected with autoimmune thyroid disease (AITD). Multipoint analysis, designating all AITD sib pairs as affected, showed a peak NPL score of 3.46 (P=.0003), at the marker D18S487. Designation of only GD cases as affected (74 sib pairs) showed a peak NPL score of 3.09 (P=.001). Linkage to this region has been demonstrated in type 1 diabetes (IDDM6), rheumatoid arthritis, and systemic lupus erythematosus, which suggests that this locus may have a role in several forms of autoimmunity.  相似文献   

8.
Type 1 diabetes (T1D) is a genetically complex disorder of glucose homeostasis that results from the autoimmune destruction of the insulin-secreting cells of the pancreas. Two previous whole-genome scans for linkage to T1D in 187 and 356 families containing affected sib pairs (ASPs) yielded apparently conflicting results, despite partial overlap in the families analyzed. However, each of these studies individually lacked power to detect loci with locus-specific disease prevalence/sib-risk ratios (lambda(s)) <1.4. In the present study, a third genome scan was performed using a new collection of 225 multiplex families with T1D, and the data from all three of these genome scans were merged and analyzed jointly. The combined sample of 831 ASPs, all with both parents genotyped, provided 90% power to detect linkage for loci with lambda(s) = 1.3 at P=7.4x10(-4). Three chromosome regions were identified that showed significant evidence of linkage (P<2.2x10(-5); LOD scores >4), 6p21 (IDDM1), 11p15 (IDDM2), 16q22-q24, and four more that showed suggestive evidence (P<7.4x10(-4), LOD scores > or =2.2), 10p11 (IDDM10), 2q31 (IDDM7, IDDM12, and IDDM13), 6q21 (IDDM15), and 1q42. Exploratory analyses, taking into account the presence of specific high-risk HLA genotypes or affected sibs' ages at disease onset, provided evidence of linkage at several additional sites, including the putative IDDM8 locus on chromosome 6q27. Our results indicate that much of the difficulty in mapping T1D susceptibility genes results from inadequate sample sizes, and the results point to the value of future international collaborations to assemble and analyze much larger data sets for linkage in complex diseases.  相似文献   

9.
In ethnic Russians, MHC (HLA) was shown to be the major locus determining the predisposition to type 1 diabetes mellitus (T1DM). To map the regions linked to T1DM, families with concordant or discordant sib pairs were selected from the Russian population of Moscow. With these families, linkage to T1DM was demonstrated for CTLA4 (IDDM12, 2q32.1-q33), which codes for a T-cell surface antigen, and PDCD2 (IDDM8, 6q25-q27), which is homologous to the mouse programmed cell death activator gene. With polymorphic microsatellites, regions 3q21-q25 (IDDM9) and 10p12.2 (IDDM10) were also linked to T1DM. Case/control and family studies of the polymorphic markers from region 11p13 revealed a new T1DM-associated locus in the vicinity of the catalase gene (CAT); linkage to this locus was not reported earlier for other populations. Diabetic polyneuropathy (DPN) proved to be associated with single-nucleotide polymorphisms Ala(-9)Val (SOD2), Arg213Gly (SOD3), and T(-262)C (CAT) and with a polymorphic microsatellite of the NOS2 promoter. Hence oxidative stress, which results from hyperglycemia, increased mitochondrial production of superoxide radicals, and insufficient activities of antioxidative enzymes, was assumed to play an important part in DPN development in T1DM. Diabetic nephropathy (DN) showed no association with the antioxidative enzyme genes. However, the association was observed for the insertion/deletion (I/D) polymorphism of ACE and the ecNOS34a/4b polymorphism of NOS3, two genes involved in controlling vascular tonicity, and for the I/D polymorphism of APOB and the epsilon 2/epsilon 3/epsilon 4 polymorphism of APOE, two genes involved in lipid transport. In addition, polymorphic microsatellites of chromosome 3q21-q25 proved to be closely associated with DN. The tightest association was established for D3S1550, carriers of allele 12 or genotype 12/14 having high risk of DN (OR = 4.85 and 6.25, respectively). Region 3q21-q25 was assumed to contain a major gene determining DN development, while the other DN-associated genes mostly affect the progression of DN.  相似文献   

10.
Familial multiple endocrine neoplasia, type 1 (FMEN1), is an autosomal dominant trait generated by hyperfunction of various endocrine glands. The gene for MEN1 has been mapped to chromosome 11q13 by genetic linkage and deletion mapping in tumors. Eight Finnish families, including 46 individuals carrying the risk haplotype, have been typed for four polymorphic microsatellite DNA markers spanning the MEN1 chromosomal region. Three of the loci concerned, D11S913, D11S987, and D11S1337, displayed maximum lod scores (Z max ) 6.70, 9.88, and 2.54, respectively, with no recombinations with the disease gene, whereas a Z max of 8.43 was obtained for D11S971 at a recombination fraction of 0.03. Our results indicate that the use of this set of markers considerably improves the diagnostic value of genotyping patients at risk of developing MEN1.  相似文献   

11.
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder characterised by tumours of the parathyroids, pancreas and anterior pituitary. The MEN1 gene has been localised to a 2-Mb region of chromosome 11q13 by meiotic mapping studies in MEN1 families. Such studies may have a limited resolution of approximately 1 cM (i.e. 1 Mb) and we have therefore investigated 96 MEN1 families (40 British, 17 French, 12 Finnish, 7 Swedish, 7 Dutch, 7 North American, 2 Australian, 1 New Zealand, 1 German, 1 Spanish and 1 Danish) for linkage disequilibrium, in order to facilitate a finer mapping resolution. We have utilised five microsatellite DNA sequence polymorphisms from the candidate region and have accurately determined their allele sizes, which ranged from 161 bp to 272 bp. The heterozygosity and number of alleles (given in brackets), respectively, at the loci were: D11S1883 (76%, 11), D11S457 (55%, 5), PYGM (94%, 18), D11S1783 (10%, 4) and D11S449 (87%, 16). Allelic association was assessed by Chi-square 2 ×n contingency tables, by Fisher exact 2 ×n contingency tables and by a likelihood-based approach. The results of haplotype analysis revealed 91 different affected haplotypes in the 96 families, an identical affected haplotype being observed in no more than two families. These results indicate the absence of an ancestral affected haplotype. Significant linkage disequilibrium (P < 0.005) could be established amongst the microsatellite loci but not between the loci and MEN1 in either the total population or in any of the geographical sub-populations. The absence of linkage disequilibrium between MEN1 and the polymorphic loci is probably the result of the occurrence of multiple different disease-causing mutations in MEN1. Received: 1 April 1997 / Accepted: 25 June 1997  相似文献   

12.
Several previous linkage scans in type 2 diabetes (T2D) families indicated a putative susceptibility locus on chromosome 12q15-q22, while the underlying gene for T2D has not yet been identified. We performed a region-wide association analysis on 12q15-q22, using a dense set of >500 single-nucleotide polymorphisms (SNPs), in 1492 unrelated Japanese individuals enrolled in this study. We identified an association between T2D and a haplotype block spanning 13.6 kb of genomic DNA that includes the entire SOCS2 gene. Evolutionary-based haplotype analysis of haplotype-tagging SNPs followed by a "sliding window" haplotypic analysis indicated SNPs that mapped to the 5' region of the SOCS2gene to be associated with T2D with high statistical significance. The SOCS2 gene was expressed ubiquitously in human and murine tissues, including pancreatic beta-cell lines. Adenovirus-mediated expression of the SOCS2 gene in MIN6 cells or isolated rat islets significantly suppressed glucose-stimulated insulin secretion. Our data indicate that SOCS2 may play a role in susceptibility to T2D in the Japanese.  相似文献   

13.
Chromosome 6p is one of the most commonly implicated regions in the genome-wide linkage scans of schizophrenia, whereas further association studies for markers in this region were inconsistent likely due to heterogeneity. This study aimed to identify more homogeneous subgroups of families for fine mapping on regions around markers D6S296 and D6S309 (both in 6p24.3) as well as D6S274 (in 6p22.3) by means of similarity in neurocognitive functioning. A total of 160 families of patients with schizophrenia comprising at least two affected siblings who had data for eight neurocognitive test variables of the continuous performance test (CPT) and the Wisconsin card sorting test (WCST) were subjected to cluster analysis with data visualization using the test scores of both affected siblings. Family clusters derived were then used separately in family-based association tests for 64 single nucleotide polymorphisms (SNPs) covering the region of 6p24.3 and 6p22.3. Three clusters were derived from the family-based clustering, with deficit cluster 1 representing deficit on the CPT, deficit cluster 2 representing deficit on both the CPT and the WCST, and a third cluster of nondeficit. After adjustment using false discovery rate for multiple testing, SNP rs13873 and haplotype rs1225934-rs13873 on BMP6-TXNDC5 genes were significantly associated with schizophrenia for the deficit cluster 1 but not for the deficit cluster 2 or nondeficit cluster. Our results provide further evidence that the BMP6-TXNDC5 locus on 6p24.3 may play a role in the selective impairments on sustained attention of schizophrenia.  相似文献   

14.
Spondyloarthritis (SpA) is a chronic inflammatory disorder with a strong genetic predisposition dominated by the role of HLA-B27. However, the contribution of other genes to the disease susceptibility has been clearly demonstrated. We previously reported significant evidence of linkage of SpA to chromosome 9q31–34. The current study aimed to characterize this locus, named SPA2. First, we performed a fine linkage mapping of SPA2 (24 cM) with 28 microsatellite markers in 149 multiplex families, which allowed us to reduce the area of investigation to an 18 cM (13 Mb) locus delimited by the markers D9S279 and D9S112. Second, we constructed a linkage disequilibrium (LD) map of this region with 1,536 tag single-nucleotide polymorphisms (SNPs) in 136 families (263 patients). The association was assessed using a transmission disequilibrium test. One tag SNP, rs4979459, yielded a significant P-value (4.9×10−5). Third, we performed an extension association study with rs4979459 and 30 surrounding SNPs in LD with it, in 287 families (668 patients), and in a sample of 139 cases and 163 controls. Strong association was observed in both familial and case/control datasets for several SNPs. In the replication study, carried with 8 SNPs in an independent sample of 232 cases and 149 controls, one SNP, rs6478105, yielded a nominal P-value<3×10−2. Pooled case/control study (371 cases and 312 controls) as well as combined analysis of extension and replication data showed very significant association (P<5×10−4) for 6 of the 8 latter markers (rs7849556, rs10817669, rs10759734, rs6478105, rs10982396, and rs10733612). Finally, haplotype association investigations identified a strongly associated haplotype (P<8.8×10−5) consisting of these 6 SNPs and located in the direct vicinity of the TNFSF15 gene. In conclusion, we have identified within the SPA2 locus a haplotype strongly associated with predisposition to SpA which is located near to TNFSF15, one of the major candidate genes in this region.  相似文献   

15.
The gene encoding catechol-O-methyltransferase (COMT) is a strong candidate for schizophrenia susceptibility, owing to the role of COMT in dopamine metabolism, and the location of the gene within the deleted region in velocardiofacial syndrome, a disorder associated with high rates of schizophrenia. Recently, a highly significant association was reported between schizophrenia and a COMT haplotype in a large case-control sample (Shifman et al. 2002). In addition to a functional valine-->methionine (Val/Met) polymorphism, this haplotype included two noncoding single-nucleotide polymorphisms (SNPs) at either end of the COMT gene. Given the role of COMT in dopamine catabolism and that deletion of 22q11 (containing COMT) is associated with schizophrenia, we postulated that the susceptibility COMT haplotype is associated with low COMT expression. To test this hypothesis, we have applied quantitative measures of allele-specific expression using mRNA from human brain. We demonstrate that COMT is subject to allelic differences in expression in human brain and that the COMT haplotype implicated in schizophrenia (Shifman et al. 2002) is associated with lower expression of COMT mRNA. We also show that the 3' flanking region SNP that gave greatest evidence for association with schizophrenia in that study is transcribed in human brain and exhibits significant differences in allelic expression, with lower relative expression of the associated allele. Our results indicate that COMT variants other than the Val/Met change are of functional importance in human brain and that the haplotype implicated in schizophrenia susceptibility is likely to exert its effect, directly or indirectly, by down-regulating COMT expression.  相似文献   

16.
Obsessive-compulsive disorder (OCD) is a severe psychiatric illness that is characterized by intrusive and senseless thoughts and impulses (obsessions) and by repetitive behaviors (compulsions). Family, twin, and segregation studies support the presence of both genetic and environmental susceptibility factors, and the only published genome scan for OCD identified a candidate region on 9p24 at marker D9S288 that met criteria for suggestive significance (Hanna et al. 2002). In an attempt to replicate this finding, we genotyped 50 pedigrees with OCD, using microsatellite markers spanning the 9p24 candidate region, and analyzed the data, using parametric and nonparametric linkage analyses under both a narrow phenotype model (DSM-IV OCD definite; 41 affected sib pairs) and a broad phenotype model (DSM-IV OCD definite and probable; 50 affected sib pairs). Similar to what was described by Hanna et al. (2002), our strongest findings came with the dominant parameters and the narrow phenotype model: the parametric signal peaked at marker D9S1792 with an HLOD of 2.26 ( alpha =0.59), and the nonparametric linkage signal (NPL) peaked at marker D9S1813 with an NPL of 2.52 (P=.006). These findings are striking in that D9S1813 and D9S1792 lie within 0.5 cM (<350 kb) of the original 9p24 linkage signal at D9S288; furthermore, pedigree-based association analyses also implicated the 9p24 candidate region by identifying two markers (D9S288 and GATA62F03) with modest evidence (P=.046 and .02, respectively) for association.  相似文献   

17.
Human leucocyte antigen (HLA)-DRB1*15 is associated with predisposition to multiple sclerosis (MS), although conjecture surrounds the possible involvement of an alternate risk locus in the class I region of the HLA complex. We have shown previously that an alternate MS risk allele(s) may be encompassed by the telomerically extended DRB1*15 haplotype, and here, we have attempted to map the putative variant. Thirteen microsatellite markers encompassing a 6.79-megabase (D6S2236-G51152) region, and the DRB1 and DQB1 genes, were genotyped in 166 MS simplex families and 104 control families from the Australian State of Tasmania and 153 narcolepsy simplex families (trios) from the USA. Complementary approaches were used to investigate residual predisposing effects of microsatellite alleles comprising the extended DRB1*15 haplotype taking into account the strong predisposing effect of DRB1*15: (1) Disease association of the extended DRB1*15 haplotype was compared for MS and narcolepsy families--predisposing effects were observed for extended class I microsatellite marker alleles in MS families, but not narcolepsy families; (2) disease association of the extended DRB1*15 haplotype was investigated after conditioning MS and control haplotypes on the absence of DRB1*15--a significant predisposing effect was observed for a 627-kb haplotype (D6S258 allele 8-MOGCA allele 4; MOG, myelin oligodendrocyte glycoprotein) spanning the extended class I region. MOGCA allele 4 displayed the strongest predisposing effect in DRB1*15-conditioned haplotypes (p = 0.0006; OR 2.83 [1.54-5.19]). Together, these data confirm that an alternate MS risk locus exists in the extended class I region in Tasmanian MS patients independent of DRB1*15.  相似文献   

18.
Genetic studies of human susceptibility to Schistosoma (blood fluke) infections have previously identified a genetic locus determining infection intensity with the African species, Schistosoma mansoni, in the 5q31-33 region of the human genome that is known to contain the Th2 immune response cluster, including the genes encoding the IL-4, IL-5, and IL-13 cytokines. These cytokines are key players in inflammatory immune responses and have previously been implicated in human susceptibility to infection with the Asian species, S. japonicum. In a nested case control study, we genotyped 30 HapMap tagging single nucleotide polymorphisms (SNPs) across these three genes in 159 individuals identified as putatively susceptible to reinfection with S. japonicum and in 133 putatively resistant individuals. A third group comprising 113 individuals demonstrating symptomatic infection was also included. The results provided no significant association at a global level between reinfection predisposition and any of the individual SNPs or haplotype blocks. However, two tagging SNPs in IL-5 demonstrated globally significant association with susceptibility to symptomatic infection. They were in strong linkage disequilibrium with each other and were found to belong to the same haplotype block that also provided a significant association after permutation testing. This haplotype was located in the 3'-untranslated region of IL-5, suggesting that variants in this region of IL-5 may modulate the immune response in these individuals with symptomatic infection.  相似文献   

19.
Familial hypercholesterolemia results from mutations in the low-density lipoprotein (LDL) receptor or apolipoprotein B genes. We have previously reported the identification of a Utah autosomal-dominant hypercholesterolemia pedigree (kindred 1173) that did not show linkage to either of these loci (Hunt et al. 2000). Expansion of the pedigree and increased marker density within the region of interest have resulted in a multipoint LOD score of 9.6 and enabled us to decrease the size of the linked region to approximately 7.5 Mbp. In addition, we were able to identify additional families sharing the same microsatellite haplotype. While all haplotype carriers in kindred 1173 (K1173) are affected, the haplotype carriers within the newly identified families are unaffected, suggesting that the causal mutation in K1173 had occurred after divergence of these pedigrees from a common ancestor. Mutation screening of genes in the region identified a single nucleotide variant (GT) present on the K1173 haplotype that was not present on the same haplotype in the other kindreds. This variant results in a D374Y missense change in the gene PCSK9.  相似文献   

20.
We performed linkage and linkage disequilibrium (LD) mapping analyses to compare the power between microsatellite and single nucleotide polymorphism (SNP) markers. Chromosome-wide analyses were performed for a quantitative electrophysiological phenotype, ttth1, on chromosome 7. Multipoint analysis of microsatellite markers using the variance component (VC) method showed the highest LOD score of 4.20 at 162 cM, near D7S509 (163.7 cM). Two-point analysis of SNPs using the VC method yielded the highest LOD score of 3.98 in the Illumina SNP data and 3.45 in the Affymetrix SNP data around 152-153 cM. In family-based single SNP and SNP haplotype LD analysis, we identified seven SNPs associated with ttth1. We searched for any potential candidate genes in the location of the seven SNPs. The SNPs rs1476640 and rs768055 are located in the FLJ40852 gene (a hypothetical protein), and SNP rs1859646 is located in the TAS2R5 gene (a taste receptor). The other four SNPs are not located in any known or annotated genes. We found the high density SNP scan to be superior to microsatellites because it is effective in downstream fine mapping due to a better defined linkage region. Our study proves the utility of high density SNP in genome-wide mapping studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号