首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
The expression of pyelonephritis-associated pili (Pap) in uropathogenic Escherichia coli is epigenetically controlled by a reversible OFF to ON switch. In phase OFF cells, the global regulator Lrp is bound to pap sites proximal to the pilin promoter, whereas in phase ON cells, Lrp is bound to promoter distal sites. We have found that the local regulator PapI increases the affinity of Lrp for the sequence "ACGATC," which contains the target "GATC" site for DNA adenine methylase (Dam) and is present in both promoter proximal and distal sites. Mutational analyses show that methylation of the promoter proximal GATC(prox) site by Dam is required for transition to the phase ON state by specifically blocking PapI-dependent binding of Lrp to promoter proximal sites. Furthermore, our data support the hypothesis that PapI-dependent binding of Lrp to a hemimethylated GATC(dist) site generated by DNA replication is a critical component of the switch mechanism.  相似文献   

4.
Regulation of the pap operon in uropathogenic Escherichia coli is phase variable. This phase variation arises from competition between regulatory proteins at two sites within the regulatory region, GATC(dist) and GATC(prox). We have used the available literature data to design a stochastic model of the molecular interactions of pap regulation and expression during growth in a non-glucose environment at 37 degrees C. The resulting wild-type model is consistent with reported data. The wild-type model served as a basis for two "in silico" mutant models for investigating the role of key regulatory components, the GATC(dist) binding site and the PapI interaction with Lrp at the GATC(prox) site. Our results show that competition at GATC(dist) is required for phase variation, as previously reported. However, our results suggest that removal of competition at GATC(dist) does not affect initial state dependence. Additionally, the PapI involvement in Lrp translocation from GATC(prox) to GATC(dist) is required for the initial state dependence but not for phase variation. Our results also predict that pap expression is maximized at low growth rates and minimized at high growth rates. These predictions provide a basis for further experimental investigation.  相似文献   

5.
6.
Pyelonephritis-associated pili (pap) allow uropathogenic Escherichia coli to bind to epithelial cells and play an important role in urinary tract infection. Expression of pap is controlled by a phase-variation mechanism, based on the two distinct heritable states that are the result of adenine N6-methylation in either of the two GATC sequences in its regulatory region. The methylation status of these two sequences is sensed by the action of two proteins, Lrp and PapI, and they play a central role in determining pap gene expression in both phase-ON and phase-OFF cells. We used modern NMR techniques to determine the solution structure and backbone dynamics of PapI. We found its overall fold resembles closely that of the winged helix-turn-helix family of DNA-binding proteins. We determined that PapI possesses its own DNA-binding activity, albeit non-sequence-specific, independent of Lrp. PapI appears to bind to DNA with a K(d) in the 10 microM range. Possible mechanisms by which PapI might participate in the regulation of the pap operon are discussed in light of these new findings.  相似文献   

7.
Escherichia coli DNA adenine methyltransferase (Dam) and Leucine-responsive regulatory protein (Lrp) are key regulators of the pap operon, which codes for the pilus proteins necessary for uropathogenic E. coli cellular adhesion. The pap operon is regulated by a phase variation mechanism in which the methylation states of two GATC sites in the pap regulatory region and the binding position of Lrp determine whether the pilus genes are expressed. The post-replicative reassembly of Dam, Lrp, and the local regulator PapI onto a hemimethylated pap intermediate is a critical step of the phase variation switching mechanism and is not well understood. We show that Lrp, in the presence and in the absence of PapI and nonspecific DNA, specifically protects pap regulatory GATC sites from Dam methylation when allowed to compete with Dam for assembly on unmethylated and hemimethylated pap DNA. The methylation protection is dependent upon the concentration of Lrp and does not occur with non-regulatory GATC sites. Our data suggest that only at low Lrp concentrations will Dam compete effectively for binding and methylation of the proximal GATC site, leading to a phase switch resulting in the expression of pili.  相似文献   

8.
Escherichia coli DNA adenine methyltransferase (Dam) plays essential roles in DNA replication, mismatch repair and gene regulation. The differential methylation by Dam of the two GATC sequences in the pap promoter regulates the expression of pili genes necessary for uropathogenic E.coli cellular adhesion. Dam processively methylates GATC sites in various DNA substrates, yet the two pap GATC sites are not processively methylated. We previously proposed that the flanking sequences surrounding the two pap GATC sites contribute to the enzyme's distributive methylation. We show here that replacement of the poorly methylated pap GATC sites with sites predicted to be processively methylated indeed results in an increase in Dam processivity. The increased processivity is due to a change in the methyltransfer kinetics and not the binding efficiency of Dam. A competition experiment in which the flanking sequences of only one pap GATC site were altered demonstrates that the GATC flanking sequences directly regulate the enzyme's catalytic efficiency. The GATC flanking sequences in Dam-regulated promoters in E.coli and other bacteria are similar to those in the pap promoter. Gene regulation from some of these promoters involves mechanisms and proteins that are quite different from those in the pap operon. Further, GATC sequences previously identified to remain unmethylated within the E.coli genome, but whose function remains largely unassigned, are flanked by sequences predicted to be poorly methylated. We conclude that the GATC flanking sequences may be critical for expression of pap and other Dam-regulated genes by affecting the activity of Dam at such sites and, thus, its processivity. A model is proposed, illustrating how the sequences flanking the GATC sites in Dam-regulated promoters may contribute to this epigenetic mechanism of gene expression, and how flanking sequences contribute to the diverse biological roles of Dam.  相似文献   

9.
10.
11.
12.
13.
14.
In systems biology, a number of detailed genetic regulatory networks models have been proposed that are capable of modeling the fine-scale dynamics of gene expression. However, limitations on the type and sampling frequency of experimental data often prevent the parameter estimation of the detailed models. Furthermore, the high computational complexity involved in the simulation of a detailed model restricts its use. In such a scenario, reduced-order models capturing the coarse-scale behavior of the network are frequently applied. In this paper, we analyze the dynamics of a reduced-order Markov Chain model approximating a detailed Stochastic Master Equation model. Utilizing a reduction mapping that maintains the aggregated steady-state probability distribution of stochastic master equation models, we provide bounds on the deviation of the Markov Chain transient distribution from the transient aggregated distributions of the stochastic master equation model.  相似文献   

15.
16.
17.
Lrp is a global regulatory protein in Escherichia coli that activates expression of more than a dozen operons and represses expression of another dozen. For some operons, exogenous leucine reduces the extent of Lrp action, for others it potentiates the effect of Lrp, and for yet other operons it has no effect. In an effort to understand how leucine affects Lrp-mediated expression, we examined Lrp self-association and the effect of leucine on self-association using light scattering, chemical cross-linking, and analytical ultracentrifugation. The following results were obtained. (i) Lrp self-associates to a hexadecamer and octamer with the predominant species being hexadecamer at microM concentrations. (ii) Lrp undergoes a leucine-induced dissociation of hexadecamer to octamer. (iii) A mutant Lrp lacking 11 amino acid residues at the C terminus does not form higher-order oligomers, suggesting that the C terminus is involved in subunit association. (iv) At nM concentrations, Lrp dissociates to a dimer. It is proposed that leucine regulates the equilibrium between Lrp oligomers and thus Lrp occupancy of sites within different operons, leading to diverse regulatory patterns.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号