首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intensification of land use constitutes one of the main drivers of global change and alters nutrient fluxes on all spatial scales, causing landscape‐level eutrophication and contamination of natural resources. Changes in soil nutrient concentrations are thus indicative for crucial environmental issues associated with intensive land use. We measured concentrations of NO3–N, NH4–N, P, K, Mg, and Ca using 1,326 ion‐exchange resin bags buried in 20 cm depth beneath the main root zone in 150 temperate grasslands. Nutrient concentrations were related to land use intensity, that is, fertilization, mowing, grazing intensities, and plant diversity by structural equation modeling. Furthermore, we assessed the response of soil nutrients to mechanical sward disturbance and subsequent reseeding, a common practice for grassland renewal. Land use intensity, especially fertilization, significantly increased the concentrations of NO3–N, NH4–N, K, P, and also Mg. Besides fertilization (and tightly correlated mowing) intensity, grazing strongly increased NO3–N and K concentrations. Plant species richness decreased P and NO3–N concentrations in soil when grassland productivity of the actual year was statistically taken into account, but not when long‐term averages of productivity were used. Thus, we assume that, in the actual study year, a distinct drought period might have caused the observed decoupling of productivity from fertilization and soil nutrients. Breaking up the grassland sward drastically increased NO3–N concentrations (+146%) but reduced NH4–N, P, and K concentrations, unbalancing soil nutrient stoichiometry and boosting the risk of N leaching. Reseeding the sward after disturbance did not have a short‐term effect on nutrient concentrations. We conclude that renewal of permanent grassland should be avoided as far as possible and future grassland management has to strongly rise the effectiveness of fertilization. Additionally, grassland management might have to increasingly taking care of periods of drought, in which nutrient additions might not increase plant growth but potentially only facilitate leaching.  相似文献   

2.
There is growing concern that available base cation pools in soil are declining in eastern North America and that some forests are approaching nitrogen (N) saturation due to the combined effects of acid deposition and harvesting. To assess these concerns, elemental mass balances for calcium (Ca), magnesium (Mg), potassium (K), and N were conducted over a 17-year period in a representative mixed hardwood forest (HP4) in the Muskoka-Haliburton region in central Ontario, Canada. On average, 76% of the N measured in bulk deposition, which is a conservative estimate of total N deposition, was retained in HP4, with tree uptake accounting for over half of the retained N. Year-to-year variations in annual NO3 export were affected by climate variations, although the low annual NO3-N concentrations (80–156 g/L) suggest that HP4 is not approaching N saturation. Losses of Ca, Mg, and K in stream export plus accumulation in trees (more than 12 cm in diameter at breast height) exceeded inputs in deposition by 296, 76.2, and 53.6 kg/ha, respectively, over the 17-year period. Inclusion of mineral weathering estimates obtained using PROFILE, zirconium (Zr) depletion, and total analysis correlation failed to balance Ca losses from HP4, and calculations indicate that between 98 and 145 kg/ha (depending on mineral weathering estimate) was lost from the soil exchangeable pool between 1983 and 1999. These losses were supported by repeated field measurements, which showed that the exchangeable Ca concentrations and soil pH decreased over the 17-year period, particularly in the upper soil horizons. When mineral weathering estimates are included, mass balance calculations generally indicated that there was no net loss of Mg and K from HP4, which was confirmed by our soil measurements. At present, there is sufficient Ca in the soil exchangeable pool to sustain forest growth at HP4; however, continued losses of Ca due to leaching and harvesting at the present rate may ultimately threaten the health and productivity of the forest within just a few decades.  相似文献   

3.
The effect of inorganic nitrogen (N) fertilizer on the ionic composition of the soil solution under maize (Zea mays L.) was studied. A pot experiment was carried out with two treatments combined factorially, with or without N application (Ca(NO3)2; +N and –N treatments, respectively), and with or without plants. Three looped hollow fiber samplers were installed in each pot to sample soil solutions nondestructively from the root zone, seven times during the 50-day growth period. Plants were harvested on the 50th day, and their nutrient contents determined.Effects of N fertilizer on the soil solutions were observed by the first sampling, 2 days after sowing. The concentrations of Ca and NO3 and electrical conductivity (EC) increased significantly in the +N treatments as direct effects of fertilizer application. In addition, the concentrations of Mg, K, Na and H+ also increased and that of P decreased significantly as indirect effects caused by the re-establishment of chemical equilibria. This suggested the greater supply as well as the greater possibility of leaching loss not only of NO3 but also of Ca, Mg and K. In the treatments with plants, the concentrations of NO3 , Ca, Mg and K decreased with time and pH increased significantly compared with the unplanted soil. The depletion of N in the soil solution roughly agreed with the amount of N taken up by the plant. The depletions of K from the soil solution amounted to less than 10% of the amount of the K taken up, suggesting intensive replenishment of K from exchange sites in the soil. Depletions of Ca and Mg were several times higher than the amounts taken up, indicating that the depletions resulted from the adsorption of the divalent cations by the soil rather than uptake by plants. Because NO3 is hardly absorbed by exchange sites in soil and was the dominant anion in solution, it was concluded that NO3 had a major role in controlling cation concentrations in the soil solution and, consequently, on their availability for uptake by plants as well as their possible leaching loss. ei]H Marschner  相似文献   

4.
Summary The objective of this field study was to determine early-season effects of N source, N, K, and P fertilization, and clipping (to simulate grazing) on potential tetany hazard of bromegrass (Bromus inermis L.) as indicated by the chemical composition of its forage. Tetany is a metabolic disorder of ruminants resulting from forage with low Mg availability. Chemical components considered in the forage were inorganic cations, organic acids, aconitate, and per cent total N/per cent total water soluble carbohydrate (N/TWSC). Differences between the sum (in meq/kg) of inorganic cations (Mg, Ca, K, and Na) and inorganic anions (Cl, NO3, H2PO4, and SO4) in forage were defined as the concentration of organic acids (C-A). Soil was Parshall fsl, a Pachic Haploboroll. Yields and chemical composition of oven-dried forage from previously unclipped and reclipped plots were determined at 3-week intervals beginning May 22 and June 12, respectively. A water budget was determined using soil-water and rainfall data.Forage yields were increased 2- to 3-fold by N fertilization with the NO3-N source generally outyielding the NH4-N source. A slight additional yield response to that obtained with N alone was obtained with K+P fertilization but not with K or P alone with or without N. Much less total forage was removed from reclipped plots than from unclipped plots. Forage Mg content was decreased only slightly by K or NH4-N fertilization. Soil analysis indicated that high NH4-N levels were present at the May 22 harvest. Magnesium and Ca concentrations were only slightly affected by N fertilization; however, K, K/(Ca+Mg), total N, C-A, and aconitate were increased. Reclipping increased Mg, N, K, N/TWSC, C-A, and aconitate. Estimates of blood-plasma Mg concentrations were obtained by using the data for plant N, K, and Mg. These estimates did not indicate increased tetany hazard as a result of reclipping, but did indicate increased tetany hazard from N fertilization. Forage C-A and aconitate concentrations were decreased by fertilization with KCl which seemed to have been caused by the increased Cl concentrations in the forage. Estimates of quantities of Mg, arriving at the root surfaces from the soil by mass flow, far exceeded amounts of Mg in the forage. Mass flow seemed to be the principal mechanism by which Mg and Ca arrived at root surfaces but this mechanism was much less important for K.This study indicated an increased potential tetany hazard resulting primarily from N fertilization with either NH4-N or NO3-N sources. However, the potential for increased forage and livestock-carrying capacity with N fertilization is very large. Therefore, management practices corroborated by livestock data are vitally needed to minimize tetany hazard while increasing bromegrass yields by N fertilization.Contribution from Soil, Water, and Air Sciences, North Central and Northeastern Regions, ARS-USDA.Follett, Power, and Grunes are soil scientists and Kleinis a biological laboratory technician. Follett is now National Program Staff Scientist, ARS, BARC-West, Beltsville, MD 20705. Power and Klein are at the USDA Northern Great Plains Research Center, Mandan, ND 58554, as formerly was Follett. Grunes is at the U.S. Plant, Soil and Nutrition Laboratory, Ithaca, NY 14853.  相似文献   

5.
The biogeochemistry of potassium at Hubbard Brook   总被引:8,自引:5,他引:3  
A synthesis of the biogeochemistry of K was conducted during 1963–1992 in the reference and human-manipulated watershed-ecosystems of the Hubbard Brook Experimental Forest (HBEF), NH. Results showed that during the first two years of the study (1963–65), which coincided with a drought period, the reference watershed was a net sink for atmospheric inputs of K. During the remaining years, this watershed has been a net source of K for downstream ecosystems. There have been long-term declines in volume-weighted concentration and flux of K at the HBEF; however, this pattern appears to be controlled by the relatively large inputs during the initial drought years. Net ecosystem loss (atmospheric deposition minus stream outflow) showed an increasing trend of net loss, peaking during the mid-1970s and declining thereafter. This pattern of net K loss coincides with trends in the drainage efflux of SO4 2– and NO3 , indicating that concentrations of strong acid anions may be important controls of dissolved K loss from the site. There were no long-term trends in streamwater concentration or flux of K. A distinct pattern in pools and fluxes of K was evident based on biotic controls in the upper ecosystem strata (canopy, boles, forest floor) and abiotic controls in lower strata of the ecosystem (mineral soil, glacial till). This biological control was manifested through higher concentrations and fluxes of K in vegetation, aboveground litter, throughfall and forest floor pools and soil water in the northern hardwood vegetation within the lower reaches of the watershedecosystem, when compared with patterns in the high-elevation spruce-fir zone. Abiotic control mechanisms were evident through longitudinal variations in soil cation exchange capacity (related to soil organic matter) and soil/till depth, and temporal and disturbance-related variations in inputs of strong-acid anions. Marked differences in the K cycle were evident at the HBEF for the periods 1964–69 and 1987–92. These changes included decreases in biomass storage, net mineralization and throughfall fluxes and increased resorption in the latter period. These patterns seem to reflect an ecosystem response to decreasing rates of biomass accretion during the study. Clearcutting disturbance resulted in large losses of K in stream water and from the removal of harvest products. Stream losses occur from release from slash, decomposition of soil organic matter and displacement from cation exchange sites. Elevated concentrations of K persist in stream water for many years after clearcutting. Of the major elements, K shows the slowest recovery from clearcutting disturbance.  相似文献   

6.
Acid deposition over time scales of decades may deplete essential base cation (BC) reserves in soils to the extent that forest health may be affected. In order to assess the nutrient status of soils in central Ontario, input–output budgets for calcium (Ca), magnesium (Mg), potassium (K) and nitrogen (N) were calculated over a 17-year period (1983–1999) for a coniferous catchment in the Muskoka-Haliburton region. Inputs through deposition and weathering (BCs only), were compared with outputs through stream export and net accumulation in forest biomass. Despite a lack of forest growth at PC1, annual NO3–N concentrations in the stream were low (<0.1mg/l) over the 17-year period, and over 80% of the atmospheric N input was retained in the catchment, indicating this catchment has not reached N-saturation. Stream export of Mg, and in particular Ca, exceeded input of these elements through deposition and weathering, indicating a net loss from the catchment over the 17-year period. Mass balance calculations indicated there was no net loss of K from the catchment. Soil re-sampling measurements confirmed large losses of Ca, but not Mg, and there were significant decreases in both NaCl-exchangeable Ca concentrations and soil pH between 1983 and 1999. The measured decline in soil Ca concentration amounted to a loss of approximately 85kg/ha Ca from the exchangeable pool over the 17-year period. Similarly, input–output budget calculations indicated a net loss of Ca from the catchment in the range of 76 to 88kg/ha between 1983 and 1999. Although the magnitude of Ca export decreased over the 17-year period, current stream export continues to exceed Ca input through deposition and weathering.  相似文献   

7.
Despite the widely recognized importance of disturbance in accelerating the loss of elements from land, there have been few empirical studies of the effects of natural disturbances on nitrogen (N) dynamics in forest ecosystems. We were provided the unusual opportunity for such study, partly because the intensively monitored watersheds at the Hubbard Brook Experimental Forest (HBEF), New Hampshire, experienced severe canopy damage following an ice storm. Here we report the effects of this disturbance on internal N cycling and loss for watershed 1 (W1) and watershed 6 (W6) at the HBEF and patterns of N loss from nine other severely damaged watersheds across the southern White Mountains. This approach allowed us to test one component of N limitation theory, which suggests that N losses accompanying natural disturbances can lead to the maintenance of N limitation in temperate zone forest ecosystems. Prior to the ice storm, fluxes of nitrate (NO3 ) at the base of W1 and W6 were similar and were much lower than N inputs in atmospheric deposition. Following the ice storm, drainage water NO3 concentrations increased to levels that were seven to ten times greater than predisturbance values. We observed no significant differences in N mineralization, nitrification, or denitrification between damaged and undamaged areas in the HBEF watersheds, however. This result suggests that elevated NO3 - concentrations were not necessarily due to accelerated rates of N cycling by soil microbes but likely resulted from decreased plant uptake of NO3 -. At the regional scale, we observed high variability in the magnitude of NO3 - losses: while six of the surveyed watersheds showed accelerated rates of NO3 loss, three did not. Moreover, in contrast to the strong linear relationship between NO3 loss and crown damage within HBEF watersheds [r 2: (W1 = 0.91, W6 = 0.85)], stream water NO3 concentrations were weakly related to crown damage (r 2 = 0.17) across our regional sites. The efflux of NO3 associated with the ice storm was slightly higher than values reported for soil freezing and insect defoliation episodes, but was approximately two to ten times lower than NO3 fluxes associated with forest harvesting. Because over one half of the entire years worth of N deposition was lost following the ice storm, we conclude that catastrophic disturbances contribute synergistically to the maintenance of N limitation and widely observed delays of N saturation in northern, temperate zone forest ecosystems. Present address: Department of Ecology and Evolutionary Biology, Princeton University, Guyot Hall, Princeton, New Jersey 08544, USA.  相似文献   

8.
The 24 ha Dry Creek watershed in the Catskill Mountains of southeastern New York State USA was clearcut during the winter of 1996–1997. The interactions among acidity, nitrate (NO3), aluminum (Al), and calcium (Ca2+) in streamwater, soil water, and groundwater were evaluated to determine how they affected the speciation, solubility, and concentrations of Al after the harvest. Watershed soils were characterized by low base saturation, high exchangeable Al concentrations, and low exchangeable base cation concentrations prior to the harvest. Mean streamwater NO3 concentration was about 20 μmol l−1 for the 3 years before the harvest, increased sharply after the harvest, and peaked at 1,309 μmol l−1 about 5 months after the harvest. Nitrate and inorganic monomeric aluminum (Alim) export increased by 4−fold during the first year after the harvest. Alim mobilization is of concern because it is toxic to some fish species and can inhibit the uptake of Ca2+ by tree roots. Organic complexation appeared to control Al solubility in the O horizon while ion exchange and possibly equilibrium with imogolite appeared to control Al solubility in the B horizon. Alim and NO3 concentrations were strongly correlated in B-horizon soil water after the clearcut (r 2 = 0.96), especially at NO3 concentrations greater than 100 μmol l−1. Groundwater entering the stream from perennial springs contained high concentrations of base cations and low concentrations of NO3 which mixed with acidic, high Alim soil water and decreased the concentration of Alim in streamwater after the harvest. Five years after the harvest soil water NO3 concentrations had dropped below preharvest levels as the demand for nitrogen by regenerating vegetation increased, but groundwater NO3 concentrations remained elevated because groundwater has a longer residence time. As a result streamwater NO3 concentrations had not fallen below preharvest levels, even during the growing season, 5 years after the harvest because of the contribution of groundwater to the stream. Streamwater NO3 and Alim concentrations increased more than reported in previous forest harvesting studies and the recovery was slower likely because the watershed has experienced several decades of acid deposition that has depleted initially base-poor soils of exchangeable base cations and caused long-term acidification of the soil.  相似文献   

9.
Summary The distribution and storage of major elements in acid soils from a spruce and a beech forest was investigated after fertilization of NH4NO3 and KCl followed by Ca and Mg fertilization by 2 liming applications. All fertilizers were applied on top of the soil without mixing. Most of the added Ca and Mg was detected in the humus layer, a significant part of it still in carbonatic form. The effect of liming on mineral soil pH is very low, and was only observed in the 0–10 cm layer. However, base saturation of the mineral soil increased. The storage of C and N of the humus layer was not affected. N fertilization increased the N storage of the soil only under beech, but was followed by heavy NO3-losses with seepage water under spruce. High leaching rates for K were also found in the spruce stand. The amount of K that was not leached increased the pool of exchangeable K in the deeper soil layer.  相似文献   

10.
Two hybrids of maize (Zea mays L.) differing in resistance to drought, were grown in chernozem soil in a greenhouse and were fertilized with two different forms of nitrogen: Ca(NO3)2 and (NH4)2SO4 in concentrations corresponding to 100 kg of N ha-1. After emergence of the 4th leaf, plants were exposed to drought. During the drought period, the parameters of plant water status (water potential, osmotic potential, turgor pressure and relative water content) and chlorophyll a+b concentration were monitored every two days. N and K concentration and accumulation over the drought period were also monitored.Next to differences in adaptability of the two hybrids to drought, the results demonstrate different adaptability of NH4 and NO3-treated plants within each hybrid. NH4-plants of each hybrid maintain higher turgor pressure during the drought by better osmotic adaptation. Especially significant differences appear between chlorophyll (a+b) values of NH4 and NO3-treated plants and as affected by drought. Chlorophyll concentrations of NH4-plants are higher than those of NO3-plants both in control and droughted plants. NH4 plants show a characteristic initial chlorophyll increase at the beginning of the drought period while in NO3 plants chlorophyll constantly decreases throughout the whole drought period. The influence of the nitrogen form on chlorophyll concentration changes during drought does not appear to be affected by regulation of the K concentration.  相似文献   

11.
The N, P, and S cycles in pristine forests are assumed to differ from those of anthropogenically impacted areas, but there are only a few studies to support this. Our objective was therefore to assess the controls of N, P, and S release, immobilization, and transport in a remote tropical montane forest. The study forest is located on steep slopes of the northern Andes in Ecuador. We determined the concentrations of NO3-N, NH4-N, dissolved organic N (DON), PO4-P, dissolved organic P (DOP), SO4-S, dissolved organic S (DOS), and dissolved organic C (DOC) in rainfall, throughfall, stemflow, lateral flow (in the organic layer), litter leachate, mineral soil solution, and stream water of three 8–13 ha catchments (1900–2200 m a.s.l.). The organic forms of N, P, and S contributed, on average, 55, 66, and 63% to the total N, P, and S concentrations in all ecosystem fluxes, respectively. The organic layer was the largest source of all N, P, and S species except for inorganic P and S. Most PO4 was released in the canopy by leaching and most SO4 in the mineral soil by weathering. The mineral soil was a sink for all studied compounds except for SO4. Consequently, concentrations of dissolved inorganic and organic N and P were as low in stream water (TDN: 0.34–0.39 mg N l−1, P not detectable) as in rainfall (TDN: 0.39–0.48 mg N l−1, P not detectable), whereas total S concentrations were elevated (stream water: 0.04–0.15, rainfall: 0.01–0.07 mg S l−1). Dissolved N, P, and S forms were positively correlated with pH at the scale of soil peda except inorganic S. Soil drying and rewetting promoted the release of dissolved inorganic N. High discharge levels following heavy rainstorms were associated with increased DOC, DON, NO3-N and partly also NH4-N concentrations in stream water. Nitrate-N concentrations in the stream water were positively correlated with stream discharge during the wetter period of the year. Our results demonstrate that the sources and sinks of N, P, and S were element-specific. More than half of the cycling N, P, and S was organic. Soil pH and moisture were important controls of N, P, and S solubility at the scale of individual soil peda whereas the flow regime influenced the export with stream water.  相似文献   

12.
In mixed eucalypt/rainforest in southern Tasmania, samples of surface soil 0 to 2 cm, 2 to 5 cm, and 5 to 10 cm were taken from a clear-felled coupe before and after burning in 1982, from a similar coupe after burning in 1979, and from an uncut area adjacent to each coupe. Factors compared were bulk density; total organic C, N, P, Ca, Mg, and K; pH; exchangeable Ca, Mg, and K; cation exchange capacity; extractable P; and N-mineralisation rates. The effect of burning was found to be restricted mainly to the upper 2 cm of soil. The combustion of organic matter caused losses of 7360 kg organic C and 211 kg N/ha; 348 kg Ca and 282 kg Mg and 151 kg K/ha were added to the soil in ash. Burning caused significant increases in pH, exchangeable Ca, Mg, and K, and in extractable P; cation exchange capacity was reduced. In the 6 months after burning only K was leached from the upper 2 cm of soil. Equilibrium levels of NH4?N increased initially after the fire, but between 6 and 18 months, equilibrium levels and rate of production of NH4?N during anaerobic incubation in soil of burned coupes differed little from that in adjacent uncut forest. Rates of production of NO3?N during aerobic incubation were very low throughout the period of study. It is concluded that for soils developed on dolerite in mixed eucalypt/rainforest, a single regeneration burn probably improves the nutritional status of the soil. Nutrients lost from the area as particulate ash are in quantities that will probably be replaced in rainfall in 15 to 20 years.  相似文献   

13.
豆科绿肥及施氮量对旱地麦田土壤主要肥力性状的影响   总被引:10,自引:0,他引:10  
通过2a田间定位试验,研究渭北旱塬地区夏闲期插播并翻压不同豆科绿肥(长武怀豆、大豆和绿豆)以及小麦生长季不同施氮量(0,108,135,162 kg/hm2)对麦田土壤肥力性状的影响,以期为提高旱地土壤质量提供理论依据.试验结果表明:(1)种植豆科绿肥能显著提高土壤有机质、活性有机质和全氮含量,增加土壤碳库管理指数(CPMI),对土壤速效钾含量没有显著影响;(2)绿豆还田量高于长武怀豆和大豆,然而土壤培肥效果逊于长武怀豆和大豆;(3)夏闲期种植绿肥明显消耗了土壤水分,导致绿肥翻压前、小麦播前直至收获后,0-200 cm土壤贮水量显著低于休闲处理,但耗水量与休闲没有明显差异,由于小麦产量显著增加,因此豆科绿肥显著提高了水分生产效率;(4)与不施氮相比,小麦生长季施用氮肥能显著增加土壤水分生产效率,却对土壤各肥力性状的影响均不显著.夏闲期种植并翻压豆科绿肥是旱地培肥土壤、提高水分生产效率的有效途径.  相似文献   

14.
Stream export of nitrogen (N) as nitrate (NO3; the most mobile form of N) from forest ecosystems is thought to be controlled largely by plant uptake of inorganic N, such that reduced demand for plant N during the non-growing season and following disturbances results in increased stream NO3 export. The roles of microbes and soils in ecosystem N retention are less clear, but are the dominant controls on N export when plant uptake is low. We used a mass balance approach to investigate soil N retention during winter (December through March) at the Hubbard Brook Experimental Forest by comparing NO3 inputs (atmospheric deposition), internal production (soil microbial nitrification), and stream output. We focused on months when plant N uptake is nearly zero and the potential for N export is high. Although winter months accounted for only 10–15% of annual net nitrification, soil NO3 production (0.8–1.0 g N m−2 winter−1) was much greater than stream export (0.03–0.19 N m−2 winter−1). Soil NO3 retention in two consecutive winters was high (96% of combined NO3 deposition and soil production; year 1) even following severe plant disturbance caused by an ice-storm (84%; year 2) We show that soil NO3 retention is surprisingly high even when N demand by plants is low. Our study highlights the need to better understand mechanisms of N retention during the non-growing season to predict how ecosystems will respond to high inputs of atmospheric N, disturbance, and climate change.  相似文献   

15.
Biological soil crusts (biocrusts) are crucial components of dryland ecosystems, but they are slow to recover following disturbance. Herein, we evaluated several methods for restoring lichen‐moss biocrusts that included factorial applications of moss fragments in a water‐slurry (1) with and without lichen fragments (to restore biocrust taxonomic structure), (2) with and without clay (to facilitate establishment), and (3) with and without jute ground cloth (to facilitate establishment). Three and four years after inoculation, moss and lichen cover was up to five and eight times higher on jute ground cloth than on bare ground, respectively. Lichen cover was six times higher in plots where lichen fragments were added. Clay amendments did not increase moss or lichen establishment. To understand the effects of biocrust recovery on soil properties, we measured soil inorganic nitrogen, microbial biomass carbon, and soil water availability in restoration and control plots. Restored biocrusts decreased inorganic NH4‐N availability by 67% when compared to controls 3 years after inoculation, but did not influence the availability of inorganic NO3‐N, soil water, or microbial biomass carbon. Our results demonstrate that adding a biocrust inoculant to jute ground cloth can expedite recovery of lichen‐moss biocrust and reestablish its influence on soil properties within a few years.  相似文献   

16.
The Rengen Grassland Experiment (RGE) was established in the Eifel Mountains (Germany) on a low productive Nardetum in 1941. Since then, the following fertilizer treatments have been applied with a late two-cut system: unfertilized control, Ca, CaN, CaNP, CaNPKCl and CaNPK2SO4. We aimed to understand how concentrations of macro (N, P, K, Ca and Mg), micro (Cu, Fe, Mn and Zn) and trace (As, Cd, Cr, Ni and Pb) elements in the plant biomass were affected by long-term fertilizer application, soil chemical properties and biomass production. In 2008, biomass samples from the first cut (early July) and the second cut (mid-October) were collected and analyzed. The simultaneous application of N, P and K decreased nitrogen concentration in the aboveground biomass, but substantially increased biomass production. Late cutting management decreased forage quality in highly productive more than in low productive plant communities. The concentrations of P and K in the plant biomass were positively related to P and K application and, therefore, to plant available P and K concentrations in the soil. The concentrations of some micro (Fe, Mn and Zn) and trace (As, Cd, Cr, Ni and Pb) elements in the plant biomass were negatively correlated with the amount of elements supplied by fertilizers and biomass production, probably because of the dilution effect. Long-term fertilizer application resulted in the accumulation of macro (P, Ca and Mg), micro (Fe and Mn) and trace (As and Cr) elements in the soil, but in many cases this accumulation was not connected with an increase in the concentrations of these elements in the plant biomass. Nutritional status, as indicated by the biomass N:P ratio, was consistent with N or P limitation as indicated by the nitrogen and phosphorus nutrition indices. Furthermore, additional K (co-)limitation was indicated by the N:K and K:P ratios in the biomass from the NP treatment. The results from the RGE indicate that there is no simple positive relationship between the applied elements and their concentrations in the plant biomass.  相似文献   

17.
Characterizing the dynamics of nitrogen (N) leaching from organic and conventional paddy fields is necessary to optimize fertilization and to evaluate the impact of these contrasting farming systems on water bodies. We assessed N leaching in organic versus conventional rice production systems of the Ili River Valley, a representative aquatic ecosystem of Central Asia. The N leaching and overall performance of these systems were measured during 2009, using a randomized block experiment with five treatments. PVC pipes were installed at soil depths of 50 and 180 cm to collect percolation water from flooded organic and conventional paddies, and inorganic N (NH4-N+NO3-N) was analyzed. Two high-concentration peaks of NH4-N were observed in all treatments: one during early tillering and a second during flowering. A third peak at the mid-tillering stage was observed only under conventional fertilization. NO3-N concentrations were highest at transplant and then declined until harvest. At the 50 cm soil depth, NO3-N concentration was 21–42% higher than NH4-N in percolation water from organic paddies, while NH4-N and NO3-N concentrations were similar for the conventional and control treatments. At the depth of 180 cm, NH4-N and NO3-N were the predominant inorganic N for organic and conventional paddies, respectively. Inorganic N concentrations decreased with soil depth, but this attenuation was more marked in organic than in conventional paddies. Conventional paddies leached a higher percentage of applied N (0.78%) than did organic treatments (0.32–0.60%), but the two farming systems leached a similar amount of inorganic N per unit yield (0.21–0.34 kg N Mg−1 rice grains). Conventional production showed higher N utilization efficiency compared to fertilized organic treatments. These results suggest that organic rice production in the Ili River Valley is unlikely to reduce inorganic N leaching, if high crop yields similar to conventional rice production are to be maintained.  相似文献   

18.
在云南喀斯特地区,为提升退化灌木群落的生态系统服务功能,营造了不同树种的人工林分。这些人工林分如何影响土壤化学性质还未得到充分认识。以云南泸西县灌木群落及三种常见人工林(云南松(Pinus yunnanensis)、赤杨(Alnus japonica)和侧柏(Platycladus orientalis))土壤为研究对象探讨喀斯特地区在人工林建造后土壤的13种元素全量、可利用性含量和化学计量学特征变异格局,为喀斯特石漠化治理提供理论依据。结果表明,1)基于判别分析,四种群落土壤化学计量特征可以显著区分。土壤Fe、P、K、Mn全量及交换性Ca、交换性Mg和NH_4~+-N对区分四种群落土壤贡献最大。2)四种群落之间相比,侧柏林土壤C、N、S、Na全量和NO_3~--N含量均低于其他三种群落,土壤肥力较低;赤杨林铵态氮含量最高;云南松林有效Fe、有效Cu含量/N、C素具有显著相关性,占所有元素对数的38.5%,说明该地土壤元素积累的相互依赖性。与灌木群落相比,人工林土壤元素全量和可利用性含量相关性比例均更高。这些研究结果对今后基于适地适树人工林营造、生态系统服务功能提升和经营利用,均具有重要指导意义。  相似文献   

19.
The ability of different alpine species to influence soil nutrient concentrations was quantified by growing monocultures of 17 species on a homogenized acid alpine soil mixture. The experiment was carried out at 2750 m a.s.l. in the Teberda Reserve, Northwest Caucasus. Soil nuturient contents (NH4, NO3, P, Ca, Mg, and K) and pH were analyzed after 6 years. The same soil mixture but without plants was used as a control. The plant species had significant effects on all soil properties. Different species groups tended to decrease different nutrients to different extents, e.g.Matricaria caucasica had the lowest level for NO3 andFestuca ovina for P. Many species increased the cation content (Ca, Mg, K) in the soil in comparison with the control. Prevention of cation leaching seems to be the main mechanism of these increases, because initial cation contents were higher than the final. All species, exceptSibbaldia procumbens, increased soil pH in comparison with the final control. Significant differences among taxonomic groups (families) were found for exchangeable Ca, Mg, and pH.Fabaceae decreased cation contents (Ca, Mg), but tended to increase nitrogen (NH4, NO3).Cyperaceae (Carex spp.) tended to decrease ammonium content, and bothAsteraceae andCyperaceae tended to decrease nitrate concentrations. The phosphorus content tended to be reduced by grasses. There was no strong correspondence between properties of native soils of 4 alpine communities and nutrient concentrations for species preferring those communities.  相似文献   

20.
High rates of inorganic nitrogen (N) deposition or internal N turnover increases the risks of N loss from forests with negative effects on stream water quality. We hypothesized that soil fungi may be more important N sinks than bacteria, and thus examined the impact of soil microbial community composition on N leaching from forests. We studied 19 spruce stands to examine relationships between microbial community composition, stem growth, soil-, and lysimeter-collected soil solution characteristics, and N leaching. We used nitrate concentration in the soil solution below the rooting zone as an N leaching index and phospholipid fatty acid (PLFA) analysis for characterisation of microbial communities. Microbial community composition in the organic horizon and soil solution chemistry below the rooting zone was highly correlated. Stands with low concentrations of nitrate (NO3 ?) and aluminium (Al) had higher fungi: bacteria ratio compared with stands with higher concentrations of NO3 ? and Al. Stem growth and fungi: bacteria ratio explained 70 % of the variation in N and Al leaching. We identified three microbial predictors of variation in soil solution chemistry, of which the fungi: bacteria was the strongest. The other two were putative indicators of microbial C limitation, a condition known to stimulate N mineralisation and nitrification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号