首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Thrombomodulin (TM) is an anticoagulant glycoprotein highly expressed on endothelial cell surfaces. Increased levels of soluble TM in circulation have been widely accepted as an indicator of endothelial damage or dysfunction. Previous studies indicated that various proinflammatory factors stimulate TM shedding in various cell types such as smooth muscle cells and epithelial cells. Lysophosphatidic acid (LPA) is a bioactive lipid mediator present in biological fluids during endothelial damage or injury. In the present study, we first observed that LPA triggered TM shedding in human umbilical vein endothelial cells (HUVECs). By Cyflow analysis, we showed that the LPA-induced accessibility of antibodies to the endothelial growth factor (EGF)-like domain of TM is independent of matrix metalloproteinases (MMPs), while LPA-induced TM lectin-like domain shedding is MMP-dependent. Furthermore, a stable cell line expressing TM without its lectin-like domain exhibited a higher cell proliferation rate than a stable cell line expressing full-length TM. These results imply that LPA induces TM lectin-like domain shedding, which might contribute to the exposure of its EGF-like domain for EGF receptor (EGFR) binding, thereby stimulating subsequent cell proliferation. Based on our findings, we propose a novel mechanism for the exposure of TM EGF-like domain, which possibly mediates LPA-induced EGFR transactivation.  相似文献   

4.
5.
Alteration of hepatic lipid metabolism contributes to a range of human diseases including steatosis. Sterol response element binding protein (SREBP) is the master regulator of lipid metabolism. The epigenetic mechanism whereby SREBP activity is regulated remains incompletely understood. We have previously shown that systemic knockdown of brahma-related gene 1 (Brg1), a chromatin remodeling protein, attenuates steatosis in mice by down-regulating the synthesis of pro-inflammatory mediators. Here we show that hepatocyte conditional Brg1 knockout (HepcKO) mice were largely protected from high-fat diet (HFD) induced steatosis as evidenced by decelerated weight gains, improved insulin sensitivity, ameliorated steatotic injuries, and diminished hepatic inflammation. Brg1 contributed to lipid metabolism by trans-activating the genes involved in fatty acid esterification. Mechanistically, Brg1 interacted with and was recruited by sterol response element binding protein (SREBP1c) to the promoters of SREBP target genes and optimized the chromatin structure to facilitate SREBP1c binding. Therefore, our data have identified a previously unrecognized role for Brg1 in hepatic lipid metabolism by portraying Brg1 as an essential epigenetic co-factor for SREBP1c.  相似文献   

6.
7.
8.
9.
10.
11.
The cellular localization of endothelin (ET), a novel vasoconstrictor peptide, was studied in human vascular tissues by immunohistochemistry. Distinct and diffuse staining for ET-like immunoreactivity was demonstrated in the cytoplasm of vascular endothelial cells, but not in smooth muscle cells or adventitial fibroblasts. The specificity was confirmed by the negative results following immunoabsorption. These findings suggest that human vascular endothelial cells function as an endocrine and/or paracrine cells for ET secretion.  相似文献   

12.
13.
The CD40 ligand (CD40L)-CD40 dyad can ignite proinflammatory and procoagulatory activities of the vascular endothelium in the pathogenesis and progression of atherosclerosis. Besides being expressed on the activated CD4(+) T cell surface (mCD40L), the majority of circulating CD40L reservoir (sCD40L) in plasma is released from stimulated platelets. It remains debatable which form of CD40L triggers endothelial inflammation. Here, we demonstrate that the agonistic antibody of CD40 (G28.5), which mimics the action of sCD40L, induces rapid endocytosis of CD40 independent of TRAF2/3/6 binding while CD40L expressed on the surface of HEK293A cells captures CD40 at the cell conjunction. Forced internalization of CD40 by constitutively active mutant of Rab5 preemptively activates NF-kappaB pathway, suggesting that CD40 was able to form an intracellular signal complex in the early endosomes. Internalized CD40 exhibits different patterns of TRAF2/3/6 recruitment and Akt phosphorylation from the membrane anchored CD40 complex. Finally, mCD40L but not sCD40L induces the upregulation of proinflammatory cytokines and cell adhesion factors in the primary human vascular endothelial cells in vitro, although both forms of CD40L activate NF-kappaB pathway. These results therefore may help understand the molecular mechanism of CD40L signaling that contributes to the pathophysiology of atherosclerosis.  相似文献   

14.
Gao YJ  Stead S  Lee RM 《Life sciences》2002,70(22):2675-2685
Papaverine is a vasodilator commonly used in the treatment of vasospasmic diseases such as cerebral spasm associated with subarachnoid hemorrhage, and in the prevention of spasm of coronary artery bypass graft by intraluminal and/or extraluminal administration. In this study, we examined whether papaverine in the range of concentrations used clinically causes apoptosis of vascular endothelial and smooth muscle cells. Apoptotic cells were identified by morphological changes and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. In porcine coronary endothelial cells (EC) and rat aortic smooth muscle cells (SMC), papaverine at the concentration of 10(-3) M induced membrane blebbing within 1 hour of incubation. Nuclear condensation and fragmentation were found after 24 hours of treatment. The number of apoptotic cells stained with the TUNEL method was significantly higher in the EC and the SMC after 24 hours of incubation with papaverine at the concentrations of 10(-4) and 10(-3) M than their respective controls. Acidified saline solution (pH 4.8, as control for 10(-3) M papaverine hydrochloride) did not cause apoptosis in these cells. These results showed that papaverine could damage endothelial and smooth muscle cells by inducing changes which are associated with events leading to apoptosis. Since integrity of endothelial cells is critical for normal vascular function, vascular administration of papaverine for clinical use, especially at high concentrations (> or = 10(-4) M), should be re-considered.  相似文献   

15.
Sphingosine-1-phosphate receptor 1 (S1P1), a receptor for sphingosine-1-phosphate, has been shown to play an important role in the migration, proliferation, and survival of several types of cell including endothelial cells. Given that S1P1 signaling could serve as a therapeutic target, we evaluate the expression of S1P1 in formalin-fixed and paraffin-embedded sections from human tissues, using automated immunostainers (Ventana). The specificity of the polyclonal rabbit anti-human S1P1 antibody used in this study was defined by immunostaining of the vasculature in S1P 1 −/− and S1P 1 +/− mouse embryos. The antibody stained the newly formed vasculatures ex vivo in a serum-free matrix culture model using rat aortic rings. In human specimens, S1P1 was strongly expressed on the cell surface membrane of endothelial cells of blood and lymphatic vessels in all tissues examined. The expression of S1P1 was confirmed by the flow cytometric analysis and real time RT-PCR of an angiosarcoma cell line. This study indicates that S1P1 can be used as an immunohistochemical marker for human tissue endothelial cells.  相似文献   

16.
17.
18.
c-Fes plays pivotal roles in angiogenic cellular responses of endothelial cells. Here we examined the role of c-Fes in vascular endothelial growth factor-A (VEGF-A)-mediated signaling pathways in endothelial cells. We introduced either wild-type or kinase-inactive c-Fes in porcine aortic endothelial (PAE) cell lines, which endogenously express VEGF receptor (VEGFR)-1, and PAE cells ectopically expressing VEGFR-2 (denoted KDR/PAE cells) and generated stable cell lines. VEGF-A induced autophosphorylation of c-Fes only in KDR/PAE cells, suggesting that VEGFR-2 was required for its activation. Expression of kinase-inactive c-Fes failed to demonstrate dominant negative effect on VEGF-A-induced chemotaxis and capillary morphogenesis. Phosphoinositide 3-kinase (PI3-kinase) was activated in KDR/PAE cells and c-Fes contributed to this process in a kinase activity-dependent manner. However, VEGFR-2, insulin receptor substrate-1, and c-Src were also involved in VEGF-A-induced activation of PI3-kinase, resulting in the compensation in cells expressing kinase-inactive c-Fes. Interestingly, overexpression of wild-type c-Fes in PAE cells induced VEGF-A-independent capillary morphogenesis. Considered collectively, VEGF-A activated PI3-kinase partly through c-Fes and increase in c-Fes kinase activity enhanced capillary morphogenesis by yet unknown signaling pathways.  相似文献   

19.
Tubulogenic transformation of a nontubulogenic endothelial cell line NP31 by a constitutively activated form of the Flt-1 kinase (NP31/kinase) was accompanied by an increased expression of Nox1 by sixfold over NP31. Overexpression of Nox1 in NP31 cells (NP31/Nox1) stimulated branching morphogenesis in Matrigel but surprisingly cords lacked a lumen. The branching morphogenesis by NP31/kinase and NP31/Nox1 cells was blocked either by N-acetyl-l-cysteine (NAC) or Tiron. Vascular endothelial growth factor (VEGF)-dependent sinusoidal endothelial cells (SEC) in primary culture showed fivefold increase in Nox1 expression 4 days after VEGF stimulation. Interestingly, VEGF-resistant apoptosis in SEC at day 7 was inhibited by NAC or by anti-Nox1 siRNA. These results suggest that Nox1 regulates apoptosis in SEC and can potentially stimulate branching morphogenesis in SEC-derived NP 31 cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号