首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes that provide the ribosome with aminoacyl-tRNA substrates for protein synthesis. Mutations in aaRSs lead to various neurological disorders in humans. Many aaRSs utilize editing to prevent error propagation during translation. Editing defects in alanyl-tRNA synthetase (AlaRS) cause neurodegeneration and cardioproteinopathy in mice and are associated with microcephaly in human patients. The cellular impact of AlaRS editing deficiency in eukaryotes remains unclear. Here we use yeast as a model organism to systematically investigate the physiological role of AlaRS editing. Our RNA sequencing and quantitative proteomics results reveal that AlaRS editing defects surprisingly activate the general amino acid control pathway and attenuate the heatshock response. We have confirmed these results with reporter and growth assays. In addition, AlaRS editing defects downregulate carbon metabolism and attenuate protein synthesis. Supplying yeast cells with extra carbon source partially rescues the heat sensitivity caused by AlaRS editing deficiency. These findings are in stark contrast with the cellular effects caused by editing deficiency in other aaRSs. Our study therefore highlights the idiosyncratic role of AlaRS editing compared with other aaRSs and provides a model for the physiological impact caused by the lack of AlaRS editing.  相似文献   

3.
The aminoacyl-tRNA synthetases (aaRSs) ensure the fidelity of the translation of the genetic code, covalently attaching appropriate amino acids to the corresponding nucleic acid adaptor molecules-tRNA. The fundamental role of aminoacylation reaction catalysed by aaRSs implies that representatives of the family are thought to be among the earliest proteins to appear. Based on sequence analysis and catalytic domain structure, aaRSs have been partitioned into two classes of 10 enzymes each. However, based on the structural and sequence data only, it will not be easily understood that the present partitioning is not governed by chance. Our findings suggest that organization of amino acid biosynthetic pathways and clustering of aaRSs into different classes are intimately related to one another. A plausible explanation for such a relationship is dictated by early link between aaRSs and amino acids biosynthetic proteins. The aaRSs catalytic cores are highly relevant to the ancient metabolic reactions, namely, amino acids and cofactors biosynthesis. In particular we show that class II aaRSs mostly associated with the primordial amino acids, while class I aaRSs are usually related to amino acids evolved lately. Reasoning from this we propose a possible chronology of genetic code evolution.  相似文献   

4.
Aminoacyl-tRNA synthetases (aaRSs) decipher the genetic code, covalently linking amino acids to cognate tRNAs, thus preparing substrates for the process of translation. Although aaRSs funtion primarily in translation and are localized in cytosol, mitochondria and chloroplasts there are many reports on their additional functions and subcellular destinations beyond translation. However, data on plant aaRSs are scarce. Initial analysis of amino acid sequence of Arabidopsis thaliana seryl-tRNA synthetase (SerRS) suggested that protein contains putative nuclear localization signals. GFP-localization experiments in transiently transformed epidermal onion cells and Arabidopsis protoplasts gave ambiguous results because in some cells SerRS appeared to be dually localized to both cytosol and nucleus. However, data obtained on transgenic lines expressing SerRS-TAP and GFP-SerRS revealed exclusive cytosolic location of SerRS. Subcellular distribution of SerRS did not change during stress. Cytosolic Arabidopsis SerRS was expressed and purified. The enzyme efficiently aminoacylated eukaryotic and bacterial tRNAsSer, that are structurally very different. Given the fact that the same behavior was previously shown for monocot maize SerRS, it seems that plant SerRSs exhibit unusually broad tRNASer specificity, unlike SerRSs from other organisms. Possible functional implications of this unique characteristic of plant SerRSs are discussed.  相似文献   

5.
The mitochondrion of the parasitic protozoon Trypanosoma brucei does not encode any tRNAs. This deficiency is compensated for by partial import of nearly all of its cytosolic tRNAs. Most trypanosomal aminoacyl-tRNA synthetases are encoded by single copy genes, suggesting the use of the same enzyme in the cytosol and in the mitochondrion. However, the T. brucei genome encodes two distinct genes for eukaryotic aspartyl-tRNA synthetase (AspRS), although the cell has a single tRNAAsp isoacceptor only. Phylogenetic analysis showed that the two T. brucei AspRSs evolved from a duplication early in kinetoplastid evolution and also revealed that eight other major duplications of AspRS occurred in the eukaryotic domain. RNA interference analysis established that both Tb-AspRS1 and Tb-AspRS2 are essential for growth and required for cytosolic and mitochondrial Asp-tRNAAsp formation, respectively. In vitro charging assays demonstrated that the mitochondrial Tb-AspRS2 aminoacylates both cytosolic and mitochondrial tRNAAsp, whereas the cytosolic Tb-AspRS1 selectively recognizes cytosolic but not mitochondrial tRNAAsp. This indicates that cytosolic and mitochondrial tRNAAsp, although derived from the same nuclear gene, are physically different, most likely due to a mitochondria-specific nucleotide modification. Mitochondrial Tb-AspRS2 defines a novel group of eukaryotic AspRSs with an expanded substrate specificity that are restricted to trypanosomatids and therefore may be exploited as a novel drug target.In most animal and fungal mitochondria, the total set of tRNAs required for translation is encoded on the mitochondrial genome and thus of bacterial evolutionary origin. The aminoacyl-tRNA synthetases (aaRSs)2 responsible for charging of mitochondrial tRNAs are always nuclear encoded and need to be imported into mitochondria. We therefore expect to find two sets of aaRSs, one for cytosolic aminoacyl-tRNA synthesis and a second one, of bacterial evolutionary origin, for aminoacylation of mitochondrial tRNAs (1, 2).In most cells, however, some aaRSs are targeted to both the cytosol as well as to mitochondria (3). In Saccharomyces cerevisiae, for example, four aaRSs are double-targeted to both compartments, indicating that they are able to aminoacylate tRNAs of both eukaryotic and bacterial evolutionary origin (46). In plants, the situation is more complex, since protein synthesis occurs in three compartments: the cytosol, the mitochondria, and the plastids. A recent analysis in Arabidopsis has shown that, rather than having three unique sets of aaRSs specific for the three translation systems, more than 15 aaRSs were dually targeted to the mitochondria and the plastid (7). Moreover, there is at least one aaRS that is shared between all three compartments. In summary, these examples indicate that the overlap between the different sets of aaRSs used in the various translation systems is variable and can be extensive.Most eukaryotes, except many animals and fungi, lack a variable number of mitochondrial tRNA genes. Mitochondrial translation in these organisms depends on import of a small fraction of the corresponding nucleus-encoded cytosolic tRNAs (810). As a consequence, imported tRNAs are always of eukaryotic evolutionary origin. An intriguing situation is found in trypanosomatids (such as Trypanosoma brucei and Leishmania spp.), where all mitochondrial tRNA genes have apparently been lost and all mitochondrial tRNAs are imported from the cytosol. In these organisms, all mitochondrial tRNAs derive from cytosolic tRNAs (11). It is therefore reasonable to assume that trypanosomal aaRSs are dually targeted to the cytosol and the mitochondrion. For the T. brucei glutaminyl-tRNA synthetase (GlnRS) and the glutamyl-tRNA synthetase, the dual localization has been shown experimentally (12). Moreover, dual targeting of essentially all aaRSs is suggested by the fact that the genome of T. brucei and other trypanosomatids encodes only 23 distinct aaRSs, fewer than any other eukaryote that has a mitochondrial translation system (13). Unexpectedly, two distinct genes were found for the tryptophanyl-tRNA synthetase (TrpRS), the lysyl-tRNA synthetase and the aspartyl-tRNA synthetase (AspRS). A recent study has shown that the two trypanosomal TrpRSs are required for cytosolic and mitochondrial tryptophanyl-tRNA formation (14). Trypanosomal tRNATrp is imported to the mitochondria, where it undergoes C to U editing at the wobble nucleotide and is thiolated at position 33. The RNA editing is required to decode the reassigned mitochondrial tryptophan codon UGA (1416). Both nucleotide modifications are antideterminants for the cytosolic TrpRS (14). As we concluded previously (14), the presence of a second TrpRS with expanded substrate specificity is required to efficiently aminoacylate imported, mature tRNATrp in trypanosomal mitochondria.The present study focuses on the characterization and functional analysis of another pair of duplicated trypanosomal aaRSs, the AspRSs. We show that the two enzymes are individually essential for normal growth of insect stage T. brucei. We also demonstrate that the two trypanosomal AspRSs are of eukaryotic evolutionary origin and that the aminoacylation of the cytosolic and mitochondrial tRNAAsp species requires these two distinct AspRSs.  相似文献   

6.
Accurate synthesis of aminoacyl-tRNAs (aa-tRNA) by aminoacyl-tRNA synthetases (aaRS) is an absolute requirement for errorless decoding of the genetic code and is studied since more than four decades. In all three kingdoms of life aaRSs are capable of assembling into multi-enzymatic complexes that are held together by auxiliary non-enzymatic factors, but the role of such macromolecular assemblies is still poorly understood. In the yeast Saccharomyces cerevisiae, Arc1p holds cytosolic methionyl-tRNA synthetase (cMRS) and glutamyl-tRNA synthetase (cERS) together and plays an important role in fine tuning several cellular processes like aminoacylation, translation and carbon source adaptation.  相似文献   

7.
8.
Apicomplexans possess three translationally active compartments: the cytosol, a single tubular mitochondrion, and a vestigial plastid organelle called apicoplast. Mitochondrion and apicoplast are of bacterial evolutionary origin and therefore depend on a bacterial‐like translation machinery. The minimal mitochondrial genome contains only three ORFs, and in Toxoplasma gondii the absence of mitochondrial tRNA genes is compensated for by the import of cytosolic eukaryotic tRNAs. Although all compartments require a complete set of charged tRNAs, the apicomplexan nuclear genomes do not hold sufficient aminoacyl‐tRNA synthetase (aaRSs) genes to be targeted individually to each compartment. This study reveals that aaRSs are either cytosolic, apicoplastic or shared between the two compartments by dual targeting but are absent from the mitochondrion. Consequently, tRNAs are very likely imported in their aminoacylated form. Furthermore, the unexpected absence of tRNAMet formyltransferase and peptide deformylase implies that the requirement for a specialized formylmethionyl‐tRNAMet for translation initiation is bypassed in the mitochondrion of Apicomplexa.  相似文献   

9.
10.
《FEBS letters》2014,588(23):4268-4278
Aminoacyl-tRNA synthetases (aaRSs) are ubiquitous and ancient enzymes, mostly known for their essential role in generating aminoacylated tRNAs. During the last two decades, many aaRSs have been found to perform additional and equally crucial tasks outside translation. In metazoans, aaRSs have been shown to assemble, together with non-enzymatic assembly proteins called aaRSs-interacting multifunctional proteins (AIMPs), into so-called multi-synthetase complexes (MSCs). Metazoan MSCs are dynamic particles able to specifically release some of their constituents in response to a given stimulus. Upon their release from MSCs, aaRSs can reach other subcellular compartments, where they often participate to cellular processes that do not exploit their primary function of synthesizing aminoacyl-tRNAs. The dynamics of MSCs and the expansion of the aaRSs functional repertoire are features that are so far thought to be restricted to higher and multicellular eukaryotes. However, much can be learnt about how MSCs are assembled and function from apparently ‘simple’ organisms. Here we provide an overview on the diversity of these MSCs, their composition, mode of assembly and the functions that their constituents, namely aaRSs and AIMPs, exert in unicellular organisms.  相似文献   

11.
Aminoacyl-tRNA synthetases: a new image for a classical family.   总被引:4,自引:0,他引:4  
  相似文献   

12.
氨酰tRNA合成酶(aminoacyl tRNA synthetases, aaRSs)通过催化氨基酸与相应tRNA的氨酰化以保证遗传信息翻译的准确性,在生物体内具有重要作用。近年来,随着对aaRS催化机制理解的不断加深,aaRS的应用逐渐成为研究热点。在细菌中,aaRS活性被抑制后会导致其生命活动发生紊乱,根据aaRS在人体与病原菌内不同的催化特点设计针对病原体的特异性aaRS抑制剂,将有助于开发以aaRS为靶标的新型抗生素。另外,通过突变aaRS可以在蛋白质序列中定点掺入非天然氨基酸,扩展蛋白质工程。本文简述了aaRS的分类、结构与功能的特点,并在此基础上综述了aaRS在研发新型抑制剂,设计改造特殊蛋白质等方面的应用。  相似文献   

13.
14.
15.
姚鹏  王恩多 《生命科学》2008,20(4):667-672
氨基酰.tRNA合成酶(aaRS)催化tRNA的氨基酰化反应,为生物体内蛋白质合成提供原料。许多aaRS为保持蛋白质翻译的精确性,在进化的选择压力下产生了编校功能。近年来,人们越来越多关注aaRS编校功能同人类健康之间的关系。在过去的几年中,对于aaRS编校功能缺陷在细胞内的生理效应,与疾病发生的关系和以编校活性位点作为药靶设计、开发新型抗生素的研究中取得了重要的进展。  相似文献   

16.
17.
Transfer RNA plays a fundamental role in the protein biosynthesis as an adaptor molecule by functioning as a biological link between the genetic nucleotide sequence in the mRNA and the amino acid sequence in the protein. To perform its role in protein biosynthesis, it has to be accurately recognized by aminoacyl-tRNA synthetases (aaRSs) to generate aminoacyl-tRNAs (aa-tRNAs). The correct pairing between an amino acid with its cognate tRNA is crucial for translational quality control. Production and utilization of mis-charged tRNAs are usually detrimental for all the species, resulting in cellular dysfunctions. Correct aa-tRNAs formation is collectively controlled by aaRSs with distinct mechanisms and/or other trans-factors. However, in very limited instances, mis-charged tRNAs are intermediate for specific pathways or essential components for the translational machinery. Here, from the point of accuracy in tRNA charging, we review our understanding about the mechanism ensuring correct aa-tRNA generation. In addition, some unique mis-charged tRNA species necessary for the organism are also briefly described.  相似文献   

18.
Recent evidence indicates that inhibition of protein translation may be a common pathogenic mechanism for peripheral neuropathy associated with mutant tRNA synthetases (aaRSs). aaRSs are enzymes that ligate amino acids to their cognate tRNA, thus catalyzing the first step of translation. Dominant mutations in five distinct aaRSs cause Charcot‐Marie‐Tooth (CMT) peripheral neuropathy, characterized by length‐dependent degeneration of peripheral motor and sensory axons. Surprisingly, loss of aminoacylation activity is not required for mutant aaRSs to cause CMT. Rather, at least for some mutations, a toxic‐gain‐of‐function mechanism underlies CMT‐aaRS. Interestingly, several mutations in two distinct aaRSs were recently shown to inhibit global protein translation in Drosophila models of CMT‐aaRS, by a mechanism independent of aminoacylation, suggesting inhibition of translation as a common pathogenic mechanism. Future research aimed at elucidating the molecular mechanisms underlying the translation defect induced by CMT‐mutant aaRSs should provide novel insight into the molecular pathogenesis of these incurable diseases.  相似文献   

19.
Raina M  Elgamal S  Santangelo TJ  Ibba M 《FEBS letters》2012,586(16):2232-2238
In archaea and eukaryotes aminoacyl-tRNA synthetases (aaRSs) associate in multi-synthetase complexes (MSCs), however the role of such MSCs in translation is unknown. MSC function was investigated in vivo in the archaeon Thermococcus kodakarensis, wherein six aaRSs were affinity co-purified together with several other factors involved in protein synthesis, suggesting that MSCs may interact directly with translating ribosomes. In support of this hypothesis, the aminoacyl-tRNA synthetase (aaRS) activities of the MSC were enriched in isolated T. kodakarensis polysome fractions. These data indicate that components of the archaeal protein synthesis machinery associate into macromolecular assemblies in vivo and provide the potential to increase translation efficiency by limiting substrate diffusion away from the ribosome, thus facilitating rapid recycling of tRNAs.  相似文献   

20.
In mammalian cells, aminoacyl-tRNA synthetases (aaRSs) are organized into a high-molecular-weight multisynthetase complex whose cellular function has remained a mystery. In this study, we have taken advantage of the fact that mammalian cells contain two forms of ArgRS, both products of the same gene, to investigate the complex's physiological role. The data indicate that the high-molecular-weight form of ArgRS, which is present exclusively as an integral component of the multisynthetase complex, is essential for normal protein synthesis and growth of CHO cells even when low-molecular-weight, free ArgRS is present and Arg-tRNA continues to be synthesized at close to wild-type levels. Based on these observations, we conclude that Arg-tRNA generated by the synthetase complex is a more efficient precursor for protein synthesis than Arg-tRNA generated by free ArgRS, exactly as would be predicted by the channeling model for mammalian translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号