首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA methylation, and consequent down-regulation, of tumour suppressor genes occurs in response to epigenetic stimuli during cancer development. Similarly, human oncoviruses, including human papillomavirus (HPV), up-regulate and augment DNA methyltransferase (DNMT) and histone deacetylase (HDAC) activities, thereby decreasing tumour suppressor genes (TSGs) expression. Ubiquitin-like containing PHD and RING finger domain 1 (UHRF1), an epigenetic regulator of DNA methylation, is overexpressed in HPV-induced cervical cancers. Here, we investigated the role of UHRF1 in cervical cancer by knocking down its expression in HeLa cells using lentiviral-encoded short hairpin (sh)RNA and performing cDNA microarrays. We detected significantly elevated expression of thioredoxin-interacting protein (TXNIP), a known TSG, in UHRF1-knockdown cells, and this gene is hypermethylated in cervical cancer tissue and cell lines, as indicated by whole-genome methylation analysis. Up-regulation of UHRF1 and decreased TXNIP were further detected in cervical cancer by western blot and immunohistochemistry and confirmed by Oncomine database analysis. Using chromatin immunoprecipitation, we identified the inverted CCAAT domain-containing UHRF1-binding site in the TXNIP promoter and demonstrated UHRF1 knockdown decreases UHRF1 promoter binding and enhances TXNIP expression through demethylation of this region. TXNIP promoter CpG methylation was further confirmed in cervical cancer tissue by pyrosequencing and methylation-specific polymerase chain reaction. Critically, down-regulation of UHRF1 by siRNA or UHRF1 antagonist (thymoquinone) induces cell cycle arrest and apoptosis, and ubiquitin-specific protease 7 (USP7), which stabilises and promotes UHRF1 function, is increased by HPV viral protein E6/E7 overexpression. These results indicate HPV might induce carcinogenesis through UHRF1-mediated TXNIP promoter methylation, thus suggesting a possible link between CpG methylation and cervical cancer.  相似文献   

2.
3.
4.
5.
Thymoquinone (TQ), the active principle of Nigella sativa black seeds, has anti-proliferative properties on numerous cancer cell types. Others and we have previously reported that TQ acts as agent that triggers cell cycle arrest and apoptosis through either a p53- or p73-dependent pathway. However, the immediate targets recruited upon TQ-induced cytotoxicity have not yet been clearly identified. We therefore asked whether cyclic nucleotide phosphodiesterases (PDEs) could be involved in TQ-triggered pro-apoptotic reactivity; PDEs are regulators of intracellular levels of cyclic nucleotides and therefore can modulate cAMP and cGMP-dependent cell death pathways. Our results showed that TQ specifically repressed PDE1A expression in the acute lymphoblastic leukemia Jurkat cell line. This effect is concomitant with the previously described sequential deregulation of the expression of the tumor suppressor protein p73 and the epigenetic integrator UHRF1 (Ubiquitin-like, PHD Ring Finger 1). Interestingly, RNA-interference knock-down of PDE1A expression as well as decreased PDE1A expression induced growth inhibition of Jurkat cells, cell cycle arrest and apoptosis through an activation of p73 and a repression of UHRF1. Conversely, PDE1A re-expression counteracted the cellular pro-apoptotic effects of TQ in association with a p73 repression and UHRF1 re-expression. Altogether, our results show that TQ induced an initial down-regulation of PDE1A with a subsequent down-regulation of UHRF1 via a p73-dependent mechanism. This study further proposes that PDE1A might be involved in the epigenetic code inheritance by regulating, via p73, the epigenetic integrator UHRF1. Our findings also suggest that a forced inhibition of PDE1A expression might be a new therapeutic strategy for the management of acute lymphoblastic leukemia.  相似文献   

6.
Chromatin-enriched noncoding RNAs (ncRNAs) have emerged as key molecules in epigenetic processes by interacting with chromatin-associated proteins. Recently, protein-coding mRNA genes have been reported to be chromatin-tethered, similar with ncRNA. However, very little is known about whether chromatin-enriched mRNA is involved in the chromatin modification process. Here, we comprehensively examined chromatin-enriched RNA in squamous cell carcinoma (SQCC) cells by RNA subcellular localization analysis, which was a combination of RNA fractionation and RNA-seq. We identified 11 mRNAs as highly chromatin-enriched RNAs. Among these, we focused on the dentin matrix protein-1 (DMP-1) gene because its expression in SQCC cells has not been reported. Furthermore, we clarified that DMP-1 mRNA was retained in chromatin in its unspliced form in SQCC in vitro and in vivo. As the inhibition of the unspliced DMP-1 mRNA (unspDMP-1) expression resulted in decreased cellular proliferation in SQCC cells, we performed ChIP-qPCR to identify cell cycle-related genes whose expression was epigenetically modified by unspDMP-1, and found that the CDKN1B promoter became active in SQCC cells by inhibiting unspDMP-1 expression. This result was further validated by the increased CDKN1B gene expression in the cells treated with siRNA for unspDMP-1 and by restoration of the decreased cellular proliferation rate by simultaneously inhibiting CDKN1B expression in SQCC cells. Further, to examine whether unspDMP-1 was able to associate with the CDKN1B promoter region, SQCC cells stably expressing PP7-mCherry fusion protein were transiently transfected with the unspDMP-1 fused to 24 repeats of the PP7 RNA stem loop (unspDMP-1-24xPP7) and we found that unspDMP-1-24xPP7 was efficiently precipitated with the antibody against mCherry and was significantly enriched in the CDKN1B promoter region. Thus, unspDMP-1 is a novel chromatin-enriched RNA that epigenetically regulates cellular proliferation of SQCC.  相似文献   

7.
Long non-coding RNAs are a kind of endogenous ncRNAs with a length of more than 200 bp. Accumulating evidence suggests that long non-coding RNAs function as pivotal regulators in tumorigenesis and progression. However, their biological roles in breast cancer remain largely unknown. Here, we found that IGF2 antisense RNA (IGF2-AS) was significantly decreased in breast cancer tissues, cell lines, and plasma. Patients with low IGF2-AS were more likely to develop larger tumor size and later clinical stage. Overexpression of IGF2-AS evidently inhibited the proliferation and induced apoptosis of MCF-7 and T47D cells in vitro, as well as retarded tumor growth in vivo. Further investigation revealed that IGF2-AS inhibited the expression of its sense-cognate gene IGF2 in an epigenetic DNMT1-dependent manner, resulting in the inactivation of downstream oncogenic PI3K/AKT/mTOR signaling pathway. Enforced expression of IGF2 could significantly block the tumor inhibitory effect of IGF2-AS. Importantly, we found that IGF2-AS could be used as an effective biomarker for breast cancer diagnosis and prognosis. Taken together, our study indicates that IGF2-AS is a tumor suppressor in breast cancer, restoration of IGF2-AS may be a promising treatment for this fatal disease.  相似文献   

8.
Loss of E-cadherin and epithelial to mesenchymal transition (EMT) are key steps in cancer progression. Reactive oxygen species (ROS) play significant roles in cellular physiology and homeostasis. Roles of E-cadherin (CDH1), EMT and ROS are intriguingly illustrated in many cancers without focusing their collective concert during cancer progression. We report that hydrogen peroxide (H2O2) treatment modulate CDH1 gene expression by epigenetic modification(s). Sublethal dosage of H2O2 treatment decrease E-cadherin, increase DNMT1, HDAC1, Snail, Slug and enrich H3K9me3 and H3K27me3 in the CDH1 promoter. The effect of H2O2 was attenuated by ROS scavengers; NAC, lupeol and beta-sitosterol. DNMT inhibitor, AZA prevented the H2O2 induced promoter-CpG-island methylation of CDH1. Treatment of cells with U0126 (inhibitor of ERK) reduced the expression of DNMT1, Snail and Slug, increased CDH1. This implicates that CDH1 is synergistically repressed by histone methylation, DNA methylation and histone deacetylation mediated chromatin remodelling and activation of Snail and Slug through ERK pathway. Increased ROS leads to activation of epigenetic machineries and EMT activators Snail/Slug which in their course of action inactivates CDH1 gene and lack of E-cadherin protein promotes EMT in breast cancer cells. ROS and ERK signaling facilitate epigenetic silencing and support the fact that subtle increase of ROS above basal level act as key cell signaling molecules. Free radical scavengers, lupeol and beta-sitosterol may be tested for therapeutic intervention of breast cancer. This work broadens the amplitude of epigenome and open avenues for investigations on conjoint effects of canonical and intrinsic metabolite signaling and epigenetic modulations in cancer.  相似文献   

9.
DNMT1 is recruited by PCNA and UHRF1 to maintain DNA methylation after replication. UHRF1 recognizes hemimethylated DNA substrates via the SRA domain, but also repressive H3K9me3 histone marks with its TTD. With systematic mutagenesis and functional assays, we could show that chromatin binding further involved UHRF1 PHD binding to unmodified H3R2. These complementation assays clearly demonstrated that the ubiquitin ligase activity of the UHRF1 RING domain is required for maintenance DNA methylation. Mass spectrometry of UHRF1-deficient cells revealed H3K18 as a novel ubiquitination target of UHRF1 in mammalian cells. With bioinformatics and mutational analyses, we identified a ubiquitin interacting motif (UIM) in the N-terminal regulatory domain of DNMT1 that binds to ubiquitinated H3 tails and is essential for DNA methylation in vivo. H3 ubiquitination and subsequent DNA methylation required UHRF1 PHD binding to H3R2. These results show the manifold regulatory mechanisms controlling DNMT1 activity that require the reading and writing of epigenetic marks by UHRF1 and illustrate the multifaceted interplay between DNA and histone modifications. The identification and functional characterization of the DNMT1 UIM suggests a novel regulatory principle and we speculate that histone H2AK119 ubiquitination might also lead to UIM-dependent recruitment of DNMT1 and DNA methylation beyond classic maintenance.  相似文献   

10.
11.
12.
13.
《Epigenetics》2013,8(5):544-547
In some plant species, prolonged exposure to low temperature during the winter season is necessary to acquire the competence to flower in the following spring. This process, known as vernalization, is an epigenetic change in that a mitotically stable change of the developmental potential of the meristem (competence to flower) is maintained even in the absence of the inducing signal (prolonged cold exposure). In Arabidopsis, vernalization results in stable epigenetic repression of a potent floral repressor, FLOWERING LOCUS C (FLC). Increased enrichment of Polycomb Repressive Complex 2 (PRC2) and trimethylated Histone H3 Lys 27 (H3K27me3) at FLC chromatin is necessary for the stable maintenance of FLC repression by vernalization. Recent recognition of long noncoding RNAs (ncRNAs) in vernalization response indicates that long ncRNAs are evolutionarily conserved components for PRC2-mediated repression in eukaryotes.  相似文献   

14.
15.
16.
17.
18.
19.
Methyl-CpG binding protein 2 (MeCP2) binds methylated cytosines at CpG sites on DNA and it is thought to function as a critical epigenetic regulator. Mutations in the MeCP2 gene have been associated to Rett syndrome, a human neurodevelopmental disorder. Here we show that MeCP2 is acetylated by p300 and that SIRT1 mediates its deacetylation. SIRT1, the mammalian homologue of Sir2 in yeast, is a nicotinamide-adenine dinucleotide (NAD+)-dependent histone deacetylase that belongs to the family of HDAC class III sirtuins. Importantly, SIRT1 has been shown to play a critical role in synaptic plasticity and memory formation. This study reveals a functional interplay between two critical epigenetic regulators, MeCP2 and SIRT1, which controls MeCP2 binding activity to the brain-derived neurotrophic factor (BDNF) promoter in a specific region of the brain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号