首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Cellular protein delivery is an emerging technique by which exogenous recombinant proteins are delivered into mammalian cells across the membrane. We have developed an Escherichia coli expression vector including human specific gene sequences for protein cellular delivery. The plasmid was generated by ligation the nucleotides 770–817 of the homeobox A5 mRNA sequence which was matched with protein transduction domain (PTD) of homeodomain protein A5 (HOXA5) into pET expression vector. The cellular uptake of HOXA5-PTD-EGFP was detected in 1 min and its transduction reached a maximum at 1 h within cell lysates. The cellular uptake of HOXA5-EGFP at 37 °C was greater than in 4 °C. For study for the functional role of human HOXA5-PTD, we purified HOXA5-APE1/Ref-1 and applied it on monocyte adhesion. Pretreatment with HOXA5-APE1/Ref-1 (100 nM) inhibited TNF-α-induced monocyte adhesion to endothelial cells, compared with HOXA5-EGFP. Taken together, our data suggested that human HOXA5-PTD vector provides a powerful research tools for uncovering cellular functions of proteins or for the generation of human PTD-containing proteins.  相似文献   

12.
原始生殖细胞特化在精子和卵子生成过程中发挥着重要的作用,而PR结构域蛋白质(PR-domain protein,PRDM)家族部分成员参与了该过程。PRDM1可抑制体细胞程序化过程中基因的表达,而PRDM1和PRDM14共同参与了潜在的全能性细胞的重新获取和基因组范围内表观遗传学重编程。这三个过程都是原始生殖细胞特化所必需的。此外,原始生殖细胞特化还需要一些其他因素如骨形态发生蛋白4(bone morphogenetic protein4,Bmp4)和RNA结合蛋白Lin28,这些因素通过影响PRDM发挥生理作用。对原始生殖细胞特化的理解有利于生殖细胞发育和相关问题的研究。  相似文献   

13.
Cellular senescence is a stable cell cycle arrest that can be induced by stresses such as telomere shortening, oncogene activation or DNA damage. Senescence is a potent anticancer barrier that needs to be circumvented during tumorigenesis. The cell cycle regulator p16INK4a is a key effector upregulated during senescence. Polycomb repressive complexes (PRCs) play a crucial role in silencing the INK4/ARF locus, which encodes for p16INK4a, but the mechanisms by which PRCs are recruited to this locus as well as to other targets remain poorly understood. Recently we discovered the ability of the homeobox proteins HLX1 (H2.0-like homeobox 1) and HOXA9 (Homeobox A9) to bypass senescence. We showed that HLX1 and HOXA9 recruit PRCs to repress INK4a, which constitutes a key mechanism explaining their effects on senescence. Here we provide evidence for the regulation of additional senescence-associated PRC target genes by HLX1 and HOXA9. As both HLX1 and HOXA9 are oncogenes implicated in leukemogenesis, we discuss the implications that the collaboration between Homeobox proteins and PRCs has for senescence and cancer.  相似文献   

14.
15.
16.
17.
18.
19.
PRDM2/RIZ is a member of a superfamily of histone/protein methyltransferases (PRDMs), which are characterized by the conserved N-terminal PR domain, with methyltransferase activity and zinc finger arrays at the C-terminus. Similar to other family members, two main protein types, known as RIZ1 and RIZ2, are produced from the PRDM2 locus differing by the presence or absence of the PR domain. The imbalance in their respective amounts may be an important cause of malignancy, with the PR-positive isoform commonly lost or downregulated and the PR-negative isoform always being present at higher levels in cancer cells. Interestingly, the RIZ1 isoform also represents an important target of estradiol action downstream of the interaction with hormone receptor. Furthermore, the imbalance between the two products could also be a molecular basis for other human diseases. Thus, understanding the molecular mechanisms underlying PRDM2 function could be useful in the pathophysiological context, with a potential to exploit this information in clinical practice.  相似文献   

20.
Complex genetic and biochemical interactions between HOX proteins and members of the TALE (i.e., PBX and MEIS) family have been identified in embryonic development, and some of these interactions also appear to be important for leukemic transformation. We have previously shown that HOXA9 collaborates with MEIS1 in the induction of acute myeloid leukemia (AML). In this report, we demonstrate that HOXB3, which is highly divergent from HOXA9, also genetically interacts with MEIS1, but not with PBX1, in generating AML. In addition, we show that the HOXA9 and HOXB3 genes play key roles in establishing all the main characteristics of the leukemias, while MEIS1 functions only to accelerate the onset of the leukemic transformation. Contrasting the reported functional similarities between PREP1 and MEIS1, such as PBX nuclear retention, we also show that PREP1 overexpression is incapable of accelerating the HOXA9-induced AML, suggesting that MEIS1 function in transformation must entail more than PBX nuclear localization. Collectively, these data demonstrate that MEIS1 is a common leukemic collaborator with two structurally and functionally divergent HOX genes and that, in this collaboration, the HOX gene defines the identity of the leukemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号