首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chen WY  Wang DH  Yen RC  Luo J  Gu W  Baylin SB 《Cell》2005,123(3):437-448
  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
Z Liu  G Ren  C Shangguan  L Guo  Z Dong  Y Li  W Zhang  L Zhao  P Hou  Y Zhang  X Wang  J Lu  B Huang 《PloS one》2012,7(7):e40943
All-trans retinoic acid (ATRA) has been widely investigated for treatments of many cancers including prostate cancer. HOXB13, silenced in androgen receptor-negative (AR(-)) prostate cancer cells, plays a role in AR(-) prostate cancer cell growth arrest. In this study we intended to elucidate the mechanisms that are involved in the proliferation inhibition of AR(-) prostate cancer cells triggered by ATRA. We discovered that ATRA was able to induce the growth arrest and to increase HOXB13 expression in AR(-) prostate cancer cells. Both EZH2 and DNMT3b participated in the repression of HOXB13 expression through an epigenetic mechanism involving DNA and histone methylation modifications. Specifically, EZH2 recruited DNMT3b to HOXB13 promoter to form a repression complex. Moreover, ATRA could upregulate HOXB13 through decreasing EZH2 and DNMT3b expressions and reducing their interactions with the HOXB13 promoter. Concurrently, the methylation level of the HOXB13 promoter was reduced upon the treatment of ATRA. Results from this study implicated a novel effect of ATRA in inhibition of the growth of AR(-) resistant human prostate cancer cells through alteration of HOXB13 expression as a result of epigenetic modifications.  相似文献   

11.
Du R  Sun W  Xia L  Zhao A  Yu Y  Zhao L  Wang H  Huang C  Sun S 《PloS one》2012,7(2):e30771

Background

Hypoxia-induced renal tubular cell epithelial–mesenchymal transition (EMT) is an important event leading to renal fibrosis. MicroRNAs (miRNAs) are small non-coding RNA molecules that bind to their mRNA targets, thereby leading to translational repression. The role of miRNA in hypoxia-induced EMT is largely unknown.

Methodology/Principal Findings

miRNA profiling was performed for the identification of differentially expressed miRNAs in HK-2 cells under normal and low oxygen, and the results were then verified by quantitative real time RT-PCR (qRT-PCR). The function of miRNAs in hypoxia-induced renal tubular cell EMT was assessed by the transfection of specific miRNA inhibitors and mimics. Luciferase reporter gene assays and western blot analysis were performed to validate the target genes of miR-34a. siRNA against Jagged1 was designed to investigate the role of the miR-34a-Notch pathway in hypoxia induced renal tubular cell EMT. miRNA-34a was identified as being downregulated in hypoxic renal tubular epithelial cells. Inhibition of miR-34a expression in HK-2 cells, which highly express endogenous miR-34a, promoted a mesenchymal phenotype accompanied by reduced expression of the epithelial marker Z0-1, E-cadherin and increased expression of the mesenchymal markers α-SMA and vimentin. Conversely, miR-34a mimics effectively prevented hypoxia-induced EMT. Transfection of miRNA-34a in HK-2 cells under hypoxia abolished hypoxia-induced expression of Notch1 and Jagged1 as well as Notch downstream signals, such as snail. Western blot analysis and luciferase reporter gene assays showed direct evidence for miR-34a targeting Notch1 and Jagged1. siRNAs against Jagged1 or Notch1 effectively prevented miR-34a inhibitor-induced tubular epithelial cell EMT.

Conclusions/Significance

Our study provides evidence that the hypoxia-induced decrease of miR-34a expression could promote EMT in renal tubular epithelial cells by directly targeting Notch1 and Jagged1, and subsequently, Notch downstream signaling.  相似文献   

12.
13.
14.
15.
16.
Fibrosis is the important pathway for end-stage renal failure. Glucose has been demonstrated to be the most important fibrogenesis-inducing agent according to previous studies. Despite diosgenin has been demonstrated to be anti-inflammatory, the possible role in fibrosis regulation of diosgenin remain to be investigated. In this study, renal proximal tubular epithelial cells (designated as HK-2) were treated with high concentration of glucose (HG, 27.5 mM) to determine whether diosgenin (0.1, 1 and 10 μM) has the effects to regulate renal cellular fibrosis. We found that 10 μM of diosgenin exert optimal inhibitory effects on high glucose-induced fibronectin expression in HK-2 cells. In addition, diosgenin markedly inhibited HG-induced increase in α-smooth muscle actin (α-SMA) and HG-induced decrease in E-cadherin. In addition, diosgenin antagonizes high glucose-induced epithelial-to-mesenchymal transition (EMT) signals partly by enhancing the catabolism of Snail in renal cells. Collectively, these data suggest that diosgenin has the potential to inhibit high glucose-induced renal tubular fibrosis possibly through EMT pathway.  相似文献   

17.
18.
EZH2, the catalytic subunit of polycomb repressor complex 2, has oncogenic properties, whereas RASSF2A, a Ras association domain family protein, has a tumor suppressor role in many types of human cancer. However, the interrelationship between these two genes remains unclear. Here, we showed that the downregulation of EZH2 reduces CpG island methylation of the RASSF2A promoter, thereby leading to increased RASSF2A expression. Our findings also showed that knockdown of EZH2 increased RASSF2A expression in the human breast cancer cell line MCF‐7 in cooperation with DNMT1. This was similar to the effect of 5‐Aza‐CdR, a DNA methylation inhibitor that reactivates tumor suppressor genes and activated RASSF2A expression in our study. The EZH2 inhibitor DZNep markedly suppressed the proliferation, migration, and invasion of MCF‐7 cells treated with ADR and TAM. EZH2 inhibits the expression of tumor suppressor gene RASSF2A via promoter hypermethylation. Thus, it plays an important role in tumorigenesis and is a potential therapeutic target for the treatment of breast cancer.  相似文献   

19.
20.
Diabetic nephropathy (DN), a major complication of diabetes, is characterized by hypertrophy, extracellular matrix accumulation, fibrosis and proteinuria leading to loss of renal function. Hypertrophy is a major factor inducing proximal tubular epithelial cells injury. However, the mechanisms leading to tubular injury is not well defined. In our study, we show that exposure of rats proximal tubular epithelial cells to high glucose (HG) resulted in increased extracellular matrix accumulation and hypertrophy. HG treatment increased ROS production and was associated with alteration in CYPs 4A and 2C11 expression concomitant with alteration in 20-HETE and EETs formation. HG-induced tubular injury were blocked by HET0016, an inhibitor of CYPs 4A. In contrast, inhibition of EETs promoted the effects of HG on cultured proximal tubular cells. Our results also show that alteration in CYPs 4A and 2C expression and 20HETE and EETs formation regulates the activation of the mTOR/p70S6Kinase pathway, known to play a major role in the development of DN. In conclusion, we show that hyperglycemia in diabetes has a significant effect on the expression of Arachidonic Acid (AA)-metabolizing CYPs, manifested by increased AA metabolism, and might thus alter kidney function through alteration of type and amount of AA metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号