首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
《FEBS letters》2014,588(23):4438-4447
MiR-185 expression has been associated with many cancers. However, the roles of miR-185 in human breast cancer remain elusive. Here, we found that miR-185 expression was decreased in human breast cancer tissues compared with healthy tissue controls. Up-regulation of miR-185 inhibited breast cancer cell proliferation and invasion and vice versa. MiR-185 was shown to bind to the 3′-untranslated region (UTR) of vascular endothelial growth factor a (Vegfa), and a significant inverse correlation was found between miR-185 and Vegfa. Vegfa overexpression partially restored the inhibition of cell proliferation and invasion that was induced by miR-185, and vice versa. Additionally, Vegfa expression was found to be high in human breast cancer tissues. Thus, miR-185-mediated Vegfa targeting may be involved in breast cancer formation.  相似文献   

2.
3.
Aberrant expression of Protein Arginine Methyltransferases (PRMTs) has been observed in several cancer types, including breast cancer. We previously reported that the PRMT1v2 isoform, which is generated through inclusion of alternative exon 2, is overexpressed in breast cancer cells and promotes their invasiveness. However, the precise mechanism by which expression of this isoform is controlled and how it is dysregulated in breast cancer remains unknown. Using a custom RNA interference-based screen, we identified several RNA binding proteins (RBP) which, when knocked down, altered the relative abundance of the alternatively spliced PRMT1v2 isoform. Amongst the top hits were SNW Domain containing 1 (SNW1) and RBP-associated with lethal yellow mutation (RALY), which both associated with the PRMT1 pre-mRNA and upon depletion caused an increase or decrease in the relative abundance of PRMT1v2 isoform mRNA and protein. Most importantly, a significant decrease in invasion was observed upon RALY knockdown in aggressive breast cancer cells, consistent with targeting PRMT1v2 directly, and this effect was rescued by the exogenous re-expression of PRMT1v2. We show that SNW1 expression is decreased, while RALY expression is increased in breast cancer cells and tumours, which correlates with decreased patient survival. This work revealed crucial insight into the mechanisms regulating the expression of the PRMT1 alternatively spliced isoform v2 and its dysregulation in breast cancer. It also provides proof-of-concept support for the development of therapeutic strategies where regulators of PRMT1 exon 2 alternative splicing are targeted as an approach to selectively reduce PRMT1v2 levels and metastasis in breast cancer.  相似文献   

4.
5.
Glycosylation is one of the most fundamental posttranslational modifications in cellular biology and has been shown to be epigenetically regulated. Understanding this process is important as epigenetic therapies such as those using DNA methyltransferase inhibitors are undergoing clinical trials for the treatment of ovarian and breast cancer. Previous work has demonstrated that altered glycosylation patterns are associated with aggressive disease in women presenting with breast and ovarian cancer. Moreover, the tumor microenvironment of hypoxia results in globally altered DNA methylation and is associated with aggressive cancer phenotypes and chemo-resistance, a feature integral to many cancers. There is sparse knowledge on the impact of these therapies on glycosylation. Moreover, little is known about the efficacy of DNA methyltransferase inhibitors in hypoxic tumors. In this review, we interrogate the impact that hypoxia and epigenetic regulation has on cancer cell glycosylation in relation to resultant tumor cell aggressiveness and chemo-resistance.  相似文献   

6.
This study was designed to compare usnic acid with anti-breast cancer drug molecules (A-BCDM) routinely used in the treatment of breast cancer. The miRNA information of 17 anti-breast cancer drug used in breast cancer treatment was obtained from the Small Molecule-miRNA Network-Based Inferance (SMIR-NBI) tool. We had been determined common and different expressed miRNAs between 17 A-BCDM & usnic acid and were classified according to the common miRNAs to reveal molecular similarity. As a result of the bioinformatic analyzes, 20 common miRNAs were determined between 17 A-BCDM and usnic acid. The common miRNAs were analyzed with bioinformatic tolls for determining pathways and targets. The most common miRNAs for 6 of 17 A-BCDM and usnic acid were determined as miR-374a-5p and miR-26a-5p. We compared the anti-proliferative effect of usnic acid and one of the 17 A-BCDM that tamoxifen on MDA-MB-231 triple negative breast cancer cell with real-time cell analysis system. The real time PCR assay was carried out with miR-26a-5p for evaluate to expression level of MDA-MB-231 breast cancer cell and MCF-12A non-cancerous epithelial breast cell. As a result of study, usnic acid as novel candidate drug molecule showed high similarity ratio with 5-Fluorouracil, Sulindac Sulfide, Curcumin and Cisplatin A-BCDM used in treatment of breast cancer. miR-26a-5p as common response miRNA of usnic acid and tamoxifen was showed a decreased level of expression by validated qRT-PCR assay. The obtained from study, in addition to 17 A-BCDM, usnic acid has also the potential to be used as a candidate molecule in the treatment of breast cancer. Moreover, miR-26a-5p might be used as a biomarker in the treatment of breast cancer but further analysis is required.  相似文献   

7.
Adriamycin (ADM)-based regimens are the most effective chemotherapeutic treatments for breast cancer. However, intrinsic and acquired chemoresistance is a major therapeutic problem. Our goal was to clarify the role of mediator complex subunit 19 (Med19) in chemotherapy resistance and to elucidate the related molecular mechanisms. In this study, ADM-resistant human cells (MCF-7/ADM) and tissues exhibited increased Med19 expression and autophagy levels relative to the corresponding control groups. Additionally, MCF-7/ADM cells showed changes in two selective markers of autophagy. There was a dose-dependent increase in the light chain 3 (LC3)-II/LC3-I ratio and a decrease in sequestosome 1 (P62/SQSTMl) expression. Furthermore, lentivirus-mediated Med19 inhibition significantly attenuated the LC3-II/LC3-I ratio, autophagy-related gene 3 (Atg3) and autophagy-related gene 5 (Atg5) expression, P62 degradation, and red fluorescent protein-LC3 dot formation after treatment with ADM or rapamycin, an autophagy activator. Furthermore, the antiproliferative effects of ADM, cisplatin (DDP), and taxol (TAX) were significantly enhanced after suppressing Med19 expression. Notably, the effects of Med19 on autophagy were mediated through the high-mobility group box-1 (HMGB1) pathway. Our findings suggest that Med19 suppression increased ADM chemosensitivity by downregulating autophagy through the inhibition of HMGB1 signaling in human breast cancer cells. Thus, the regulatory mechanisms of Med19 in autophagy should be investigated to reduce tumor resistance to chemotherapy.  相似文献   

8.
9.
10.
吴新刚  彭姝彬  黄谦 《遗传》2012,34(12):1529-1536
乳腺癌耐药蛋白(Breast cancer resistance protein, BCRP), 又名ABCG2, 是ATP结合盒(ATP-binding cas-sette, ABC)转运蛋白超家族成员之一, 在肿瘤多药耐药中具有十分重要的作用。BCRP基因启动子区无TATA盒, 含CAAT盒、AP1位点、AP2位点以及CpG岛下游的多个Sp-1位点。近年来的研究发现, 转录因子孕激素受体(PR)、雌激素受体(ER)、核因子-κB (NF-κB)、缺氧诱导因子(HIF)、Nrf2、芳香烃受体(AhR)、过氧化物酶体增殖活化受体(PPAR)和KLF5等可与BCRP启动子或增强子区的特定反应元件结合进而激活BCRP的转录。促炎细胞因子、生长因子、同源盒基因MSX2、Sonic hedgehog信号通路、Notch信号通路和RAR/RXR信号通路等均参与了BCRP的转录调控。此外, 启动子甲基化和组蛋白乙酰化在BCRP转录调控尤其是药物诱导BCRP表达中发挥重要作用。文章综述了这一研究领域的进展, 着重讨论了转录因子及表观遗传学在BCRP转录调控中的作用。  相似文献   

11.
Bark H  Xu HD  Kim SH  Yun J  Choi CH 《FEBS letters》2008,582(17):2595-2600
This study investigated whether P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP) are linked in terms of expression. RT-PCR and Western blot analyses showed that the lung cancer cell line SK-MES-1/WT expressed BCRP. In a drug-free state, BCRP expression was significantly down-regulated in doxorubicin-resistant SK-MES-1/DX1000 cells overexpressing Pgp. Pharmacological inhibitors (PSC833 or verapamil) or siRNA for Pgp inhibited the down-regulation of BCRP, which was confirmed by confocal microscopy. PSC833 induced the phosphorylation of c-Jun NH2-terminal kinase (JNK) and c-Jun, while the JNK inhibitor SP600125 inhibited this effect. Dominant negative c-Jun decreased the expression of BCRP, but increased that of Pgp. These results indicate that Pgp down-regulates BCRP expression in a drug-free state in which JNK/c-Jun is involved.  相似文献   

12.
It has been reported that estrogen receptor-positive MCF-7 cells express TauT, a Na+-dependent taurine transporter. However, there is a paucity of information relating to the characteristics of taurine transport in this human breast cancer cell line. Therefore, we have examined the characteristics and regulation of taurine uptake by MCF-7 cells. Taurine uptake by MCF-7 cells showed an absolute dependence upon extracellular Na+. Although taurine uptake was reduced in Cl- free medium a significant portion of taurine uptake persisted in the presence of NO3 -. Taurine uptake by MCF-7 cells was inhibited by extracellular β-alanine but not by L-alanine or L-leucine. 17β-estadiol increased taurine uptake by MCF-7 cells: the Vmax of influx was increased without affecting the Km. The effect of 17β-estradiol on taurine uptake by MCF-7 cells was dependent upon the presence of extracellular Na+. In contrast, 17β-estradiol had no significant effect on the kinetic parameters of taurine uptake by estrogen receptor-negative MDA-MB-231 cells. It appears that estrogen regulates taurine uptake by MCF-7 cells via TauT. In addition, Na+-dependent taurine uptake may not be strictly dependent upon extracellular Cl-.  相似文献   

13.
Metastasis is a complex, multistep process involved in the progression of cancer from a localized primary tissue to distant sites, often characteristic of the more aggressive forms of this disease. Despite being studied in great detail in recent years, the mechanisms that govern this process remain poorly understood. In this study, we identify a novel role for miR-139-5p in the inhibition of breast cancer progression. We highlight its clinical relevance by reviewing miR-139-5p expression across a wide variety of breast cancer subtypes using in-house generated and online data sets to show that it is most frequently lost in invasive tumors. A biotin pull-down approach was then used to identify the mRNA targets of miR-139-5p in the breast cancer cell line MCF7. Functional enrichment analysis of the pulled-down targets showed significant enrichment of genes in pathways previously implicated in breast cancer metastasis (P < 0.05). Further bioinformatic analysis revealed a predicted disruption to the TGFβ, Wnt, Rho, and MAPK/PI3K signaling cascades, implying a potential role for miR-139-5p in regulating the ability of cells to invade and migrate. To corroborate this finding, using the MDA-MB-231 breast cancer cell line, we show that overexpression of miR-139-5p results in suppression of these cellular phenotypes. Furthermore, we validate the interaction between miR-139-5p and predicted targets involved in these pathways. Collectively, these results suggest a significant functional role for miR-139-5p in breast cancer cell motility and invasion and its potential to be used as a prognostic marker for the aggressive forms of breast cancer.  相似文献   

14.
15.
Androgens have important physiological effects in women. Not only are they the precursor hormones for estrogen biosynthesis in the ovaries and extragonadal tissues, but also act directly via androgen receptors (ARs) throughout the body. Studies of the role of androgens on breast cancer development are controversial and the mechanisms involved are not fully understood. In this report we demonstrate that a non-aromatizable androgen metabolite, dihydrotestosterone (DHT), stimulated cell proliferation in vitro of both estrogen receptor-α (ER-α)-positive MCF-7 cells and ER-α-negative MDA-MB-231 human breast cancer cells. A contribution of ER to the proliferative effect of DHT in MCF-7 cells was supported by actions of small interfering RNA (siRNA) ER-α transfection and of the specific inhibitor of ER, ICI 182,780 to block DHT-induced proliferation. A contribution of the possible conversion of DHT to androstane-3α, 17β-diol was not excluded in these MCF-7 cell studies. In MDA-MB-231 cells, a novel mechanism was implicated, in that anti-integrin αvβ3 or an Arg-Gly-Asp (RGD) peptide targeted at a small molecule binding domain of the integrin eliminated the DHT effect on cell proliferation. Anti-integrin αvβ3 did not affect DHT action on MCF-7 cells. A contribution from classical androgen receptor to the DHT effect in each cell line was excluded. A proliferative DHT signal is transduced in both ER-α-positive and ER-α-negative breast cancer cells, but by discrete mechanisms.  相似文献   

16.
17.
Breast cancer is one of the most common malignancies of all cancers in women worldwide. Many difficulties reside in the prediction of tumor metastatic progression because of the lack of sufficiently reliable predictive biological markers, and this is a permanent preoccupation for clinicians. Manganese superoxide dismutase (MnSOD) may represent a rational candidate as a predictive biomarker of breast tumor metastatic progression, because its gene expression is profoundly altered between early and advanced breast cancer, in contrast to expression in the normal mammary gland. In this review, we report the characterization of some gene polymorphisms and molecular mechanisms of SOD2 gene regulation, which allows a better understanding of how MnSOD is decreased in early breast cancer and increased in advanced breast cancer. Several studies display the biological significance of MnSOD level in proliferation as well as in invasive and angiogenic abilities of breast tumor cells by controlling superoxide anion radical (O2•−) and hydrogen peroxide (H2O2). Particularly, they report how these reactive oxygen species may activate some signaling pathways involved in breast tumor growth. Emerging understanding of these findings provides an interesting framework for guiding translational research and suggests a way to define precisely the clinical interest of MnSOD as a prognostic and/or predicting marker in breast cancer, by associating with some regulators involved in SOD2 gene regulation and other well-known biomarkers, in addition to the typical clinical parameters.  相似文献   

18.
Breast cancer is one of the most common forms of cancer observed in women. Endogenous estrogen is thought to play a major role in its development and estrogen receptor blockers are the most important drugs in its treatment. It has long been thought that any conditions or exposures, which enhance estrogenic responses, would result in an increased risk for breast cancer. The discovery of the second estrogen receptor, ERβ, which can have effects opposite to those of the well-known ‘original’ estrogen receptor (now called ER) challenges this simplistic view. In order to understand breast cancer one must first understand how the normal breast is maintained. The functions of ERβ in the breast remain to be defined but from what we have learnt about its activities in in vitro systems, this estrogen receptor may have a protective role in the breast. Studies in human and rodent breasts as well as in human breast cancer biopsies reveal that ERβ is by far the more abundant of the two ERs. Despite the role of estrogen in proliferation of the breast, neither of the two ERs appears to located in epithelial cells which divide in response to estrogen. In order to define the functions of ERβ in the normal and malignant breast, we have created mice in which the ERβ gene has been inactivated. Studies of the breasts of ERβ knock out mice (BERKO) revealed abnormal epithelial growth, overexpression of Ki67 and severe cystic breast disease as mice age.  相似文献   

19.
20.
Increasing data shows miR-29a is a key regulator of oncogenic processes. It is significantly down-regulated in some kind of human tumors and possibly functionally linked to cellular proliferation, survival and migration. However, the mechanism remains unclear. In this study, we report miR-29a is significantly under-expressed in gastric cancer compared to the healthy donor. The microvessel density is negatively related to miR-29a expression in gastric cancer tissues. The ectopic expression of miR-29a significantly inhibits proliferation and invasion of gastric cancer cells. Furthermore, western blot combined with the luciferase reporter assays demonstrate that vascular endothelial growth factor A (VEGF-A) is direct target of miR-29a. This is the first time miR-29a was found to suppress the tumor microvessel density in gastric cancer by targeting VEGF-A. Taken together, these results suggest that miR-29a is a tumor suppressor in gastric cancer. Restoration of miR-29a in gastric cancer may be a promising therapeutic approach. [BMB Reports 2014; 47(1):39-44]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号