首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As the largest carbon pool of the terrestrial ecosystem, forest plays a key role in sequestrating and reserving greenhouse gases. With the method of replacing space with time, the typical restoration ecosystems of herb (dominated by Deyeuxia scabrescens, P1), shrub (dominated by Salix paraqplesia, P2), broadleaf (dominated by Betula platyphylla, P3), mixed forest (dominated by Betula spp. and Abies faxoniana, P4), and climax (dominated by Abies faxoniana, P5) were selected to quantify the carbon stock and allocation in the subalpine coniferous forest in Western Sichuan (SCFS). The results indicated that the soil organism carbon (SOC) stock decreased with the depth of soil layer, and the SOC per layer and the total SOC increased largely with the vegetation restoration. The contribution of SOC to the carbon stock of ecosystems decreased with the vegetation restoration from 89.45% to 27.06%, while the quantity was from 94.00 to 223.00 t C hm?2. The carbon stock in ground cover increased with the vegetation restoration, and its contribution to the carbon stock of ecosystems was similar (3–4% of the total). Following the vegetation restoration, the plant carbon stock multiplied and reached to 430.86 ± 49.49 t C hm?2 at the climax phase. During the restoration, the carbon stock of different layers increased, and the contribution of belowground to the carbon stock of ecosystems decreased sharply. The carbon stock on ecosystem scale of the climax phase was 5.89 times that of the herb phase. Our results highlighted that the vegetation restoration in SCFS was a large carbon sink.  相似文献   

2.
Studies on ecosystem service function have an important significance for analyzing and understanding global warming. With the introduction of geographic information system (GIS) and remote sensing (RS) technologies for the evaluation of ecosystem service function, the scope for analysis has been widening. Increasing number of researchers use these technologies to quantify the value of ecosystem service functions and reveal their spatial-temporal variability. By using the data for the interpretation of five RS images and net primary productivity (NPP) in Qinghai Lake basin, we assessed the value of vegetation carbon fixation and oxygen release services and revealed their dynamic variation in this basin. The result suggested that the average values of vegetation carbon fixation and oxygen release services in Qinghai Lake basin between 1987 and 2010 were spatially distributed in a ring shape around the Qinghai Lake and decreased from southeastern to the north and northwestern regions; the northwestern areas had the lowest value. The vegetation carbon fixation value between 1987 and 2010 was on an average 28.87 × 108 yuan/a in Qinghai Lake basin, whereas the oxygen release value was 64.41 × 108 yuan/a. Alpine meadow ecosystem showed the highest value of vegetation carbon fixation and oxygen release services function in Qinghai Lake basin, with average values of 18.28 × 108 yuan/a and 40.79 × 108 yuan/a, respectively, followed by those of temperate steppe and sparse vegetation. The vegetation carbon fixation and oxygen release values in Qinghai Lake basin gradually increased from 1987 to 2010, with the maximum value in 2010. By the end of 2010, the values increased by 7.19 × 108 yuan and 16.04 × 108 yuan, respectively. The values slightly decreased in barren land, lakeside marsh, river valley swamp, and sandy areas, but increased to different degrees in other ecosystems. Among them, the largest increase was noted in alpine meadow (4.38 × 108 yuan and 9.78 × 108 yuan, respectively), followed by those in temperate steppe with increased values of 1.12 × 108 yuan and 2.49 × 108 yuan, respectively.  相似文献   

3.
六盘山森林植被碳密度空间分布特征及其成因   总被引:2,自引:0,他引:2  
深入了解干旱缺水地区森林植被碳密度的空间分布特征是定量评价森林固碳能力、合理协调林水矛盾的重要基础。然而,目前有关干旱缺水地区的植被碳密度的研究仅限于典型样地上的碳储量、碳密度的比较,对区域尺度上森林植被碳密度的空间分布特征了解较少。为此,利用宁夏六盘山自然保护区2005年森林资源一类清查数据,计算了森林植被碳密度,并分析了其与林分结构特征和环境因子的关系。结果表明,六盘山的森林植被碳密度(t/hm2)平均为26.17(0.67—120.63),其中天然次生林为30.2(7.6—120.6),显著高于人工林的15.7(0.67—66.7)。森林植被碳密度随林龄增加而线性增大,天然林和人工林的平均增速分别为1.11和2.48 t hm-2a-1,而且,部分未成熟林的林分植被碳密度已接近甚至超过全国同类森林类型成熟林的植被碳密度平均值。随林分密度增加,森林植被碳密度增大,但在林分密度1000株/hm2后,森林植被碳密度不再增大,达到其最大值,其中,天然林为75.4 t/hm2,人工林为34.6 t/hm2;林冠郁闭度对森林植被碳密度的影响与林分密度相似,森林植被碳密度增长的郁闭度拐点为0.5。水分条件是影响六盘山森林植被碳密度的重要因素,森林植被碳密度(t/hm2)由700 mm以上地点的32.5(7.6—120.6)下降至年降水量500—600 mm地点的10.9(0.67—42.9),而且随年降水量减少,最大森林植被碳密度所对应的海拔高度呈增加趋势,如在年降水量为700、600—700和600 mm的地区,最大碳密度所在海拔高度分别为1900—2100、2100—2300和2300—2500 m。综上所述,研究区森林植被还有较大的固碳潜力,从提高森林固碳功能角度来看,林分郁闭度不宜超过0.5。  相似文献   

4.
为阐明黄土高原中西部刺槐人工林碳密度区域分布特征及其主要影响因子,基于野外样地调查和室内样品分析估算了黄土高原中西部4个栽培区域的刺槐人工林生态系统碳密度及其分布特征,并利用相关性分析和主成分分析分析了影响生态系统碳密度的主要因子(林分、地形、土壤和气候等)。结果表明:调查区5个林龄的刺槐人工林生态系统生物量为34.13—133.08t/hm~2,不同区域之间各组分生物量存在显著性差异。植被层平均碳含量为221.93—454.67 g/kg,总体上表现为乔木层平均碳含量高于灌、草层,枯落物层平均碳含量最低,不同区域乔木、灌木、草本平均碳含量均存在显著性差异。刺槐人工林生态系统碳密度均值为106.86 t/hm~2,其中土壤层碳密度占刺槐人工林生态系统总碳密度的64.09%,是刺槐人工林生态系统碳密度的主要组成部分。植被层碳密度为38.68 t/hm~2,其中乔木层碳密度(33.88 t/hm~2)占植被层碳密度的87.58%,灌木、草本、枯落物所占比例依次为1.98%(0.77 t/hm~2)、2.00%(0.77 t/hm~2)、8.43%(3.26 t/hm~2)。不同区域土壤、生态系统碳密度均存在显著性差异。相关性分析和主成分分析表明,刺槐人工林生态系统碳密度与林龄、降水量呈显著正相关关系,与林分密度、平均气温、海拔和坡度的相关关系不显著,上述林分因子、地形因子和环境因子转化的主成分方差累积贡献率为91.07%,其中林龄和降水量是影响刺槐人工林生态系统碳密度的主要因子,方差贡献率为37.22%。  相似文献   

5.
Stable isotope analysis has been extensively used as an effective tool in determination of trophic relationship in ecosystems. In freshwater ecosystem, aquatic invertebrates represent main component of a river food web. This study was carried out to determine potential food sources of freshwater organism together with pattern of trophic position along the river food web. In this study, rivers of Belum-Temengor Forest Complex (BTFC) has been selected as sampling site as it is a pristine area that contains high diversity and abundance of organisms and can be a benchmark for other rivers in Malaysia. Stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) were applied to estimate trophic position and food web paradigm. Analysis of stable isotopes based on organic material collected from the study area revealed that the highest δ13C value was reported from filamentous algae (? 22.68 ± 0.1260/00) and the lowest δ13C was in allocthonous leaf packs (? 31.58 ± 0.1870/00). Meanwhile the highest δ15N value was in fish (8.45 ± 0.1770/00) and the lowest value of δ15N was in autochthonous aquatic macrophyte (2.00 ± 1.2340/00). Based on the δ15N results, there are three trophic levels in the study river and it is suggested that the trophic chain begins with organic matter followed by group of insects and ends with fish (organic matter < insects < fish).  相似文献   

6.
蔺佳玮  张全智  王传宽 《生态学报》2023,43(21):8793-8802
干扰作为森林恢复和生态演替的重要影响因子,通过其改变植被群落的组成和微环境,进而影响森林生态系统碳动态及固碳潜力。针对帽儿山地区阔叶红松原始林不同时期皆伐后形成的次生林干扰系列,包括林木采伐一次(NS,林龄56a)、采伐两次(MS,林龄25a)和采伐两次且扰动表层土壤(YD,林龄15a)的次生林,采用森林清查和异速生长方程结合的方法,旨在量化干扰方式对温带森林恢复进程中生态系统碳密度及分配格局的影响。结果表明:YD、MS和NS的0—50 cm各层次土壤有机碳含量的波动范围依次分别为10.46—29.27 mg/g、6.37—108.40 mg/g、5.21—114.34 mg/g;且随土层的加深土壤有机碳含量显著降低。表层土壤(0—20 cm)有机碳含量在各干扰处理间存在显著差异(P<0.01),而深层土壤有机碳含量差异不显著;土壤有机碳含量与容重呈显著负相关关系。表层土壤有机碳密度占土壤总有机碳密度(0—100 cm)的50%以上,YD的表层土壤有机碳密度(30.91 t/hm2)显著低于MS(54.09 t/hm2)和NS(55.1...  相似文献   

7.
Realizing the importance of forest carbon monitoring and reporting in climate change, the present study was conducted to derive spectrally modeled aboveground biomass and mitigation using Landsat data in combination with sampled field inventory data in the coniferous forests of Western Himalaya. After conducting preliminary survey in 2009, 90 quadrats (45 each for calibration and validation) of 0.1 ha were laid in six forest types for recording field inventory data viz. diameter at breast height, height, slope and aspect. Biomass carbon (Mg ha 1) was worked out for different forest types and crown density classes (open with 10–40% crown density and closed with > 40% crown density) using recommended volume equations, ratios and factors. Biomass carbon map (aboveground + belowground) was generated for the entire region using geospatial techniques. Normalized difference vegetation index (NDVI) was generated and spectral values were extracted to establish relation (R2 = 0.72, p < 0.01) with the field inventory data. The model developed was validated (R2 = 0.73, p < 0.01) with 45 sample observations not used earlier for predicting and generating biomass carbon map (2009) for the entire region. The data from field based inventory indicates highest total biomass carbon (171.40, σ ± 23.19) Mg ha 1 for Fir–Spruce (closed) which has relatively more mature girth classes and low tree density. This value was found to be significantly higher than other forest types. Lowest biomass carbon was observed for Blue Pine (open) (37.15, σ ± 11.82) Mg ha 1. The NDVI values for the entire region ranged from 0 to 0.62 and consequently the spectrally derived aboveground biomass carbon varied from 0 to 600 Mg ha 1. The study demonstrates the application of mapping, spectral responses and sampled field inventory for type wise assessment of carbon mitigation in temperate coniferous forests of Himalayas.  相似文献   

8.
Soil physicochemical properties and microbes are essential in terrestrial ecosystems through their role in cycling mineral compounds and decomposing organic matter. This study examined the effect of stand age on soil physicochemical properties and microbial community structure in wolfberry (Lycium barbarum L.) fields, in order to reveal the mechanism of soil degradation due to long-term stand of L. barbarum. The objective of the study was achieved by phospholipid fatty acid (PLFA) biomarker analysis of soil samples from L. barbarum fields in Zhongning County, Ningxia Province—the origin of L. barbarum. Five stand ages of L. barbarum were selected, < 1, 3, 6, 9, and 12 years (three plots each). The results showed that soil bulk density increased slightly with increasing stand age, while no clear trend was observed in soil pH or total salinity. As the stand age increased, soil organic matter and nutrients first increased before decreasing, with the highest levels being found in year 9. There was an amazing variety of PLFA biomarkers in soil samples at different stand ages. The average concentrations of total, bacterial, fungal, and actinomycete PLFAs in the surface soil initially decreased and then increased, before decreasing with the stand age in summer. The PLFA concentrations of major microbial groups were highest in year 9, with the total PLFA concentrations being 32.97% and 10.67% higher than those in years < 1 and 12, respectively. Higher microbial PLFA concentrations were detected in summer relative to autumn and in the surface relative to the subsurface soil. The highest ratios of Gram-positive to Gram-negative bacterial (G?/G+) and fungal to bacterial (F/B) PLFAs were obtained in year 6, on average 76.09% higher than those at the other four stand ages. The soil environment was most stable in year 6, with no differences between other stand ages. Therefore, soil microbial community structure was strongly influenced by the stand age in year 6 only. The effect of stand age on soil G?/G+ and microbial community structure varied with season and depth; there was little effect for F/B in the 20–40 cm soil layer. Principal component analysis revealed no correlations between microbial PLFA concentrations and total salinity in the soil; negative correlations were noted between soil pH and F/B in summer (P < 0.01), as well as between soil pH and fungal PLFA in autumn (P < 0.05). Moreover, microbial PLFA concentrations were correlated with soil organic matter (mean R = 0.7725), total nitrogen (mean R = 0.8296), total phosphorus (mean R = 0.8175), available nitrogen (mean R = 0.7458), and available phosphorus (mean R = 0.7795) (P < 0.01). On the whole, the soil ecosystem was most stable in year 6, while soil organic matter, nutrients, and microbial PLFA concentrations were maximal in year 9; thereafter, soil fertility indices and microbial concentrations decreased and soil quality declined gradually as the stand age increased. Therefore, farmers should reduce the application rate of fertilizers, especially compound or mixed fertilizers, in L. barbarum fields; organic or bacterial manure can be applied increasingly to improve the soil environment and prolong the economic life of L. barbarum.  相似文献   

9.
Abdominal fat accumulation is a major risk factor for cardiometabolic morbidity and mortality. The purpose of the study is to assess the possibility of developing accurate estimation equations based on body measurements to determine total abdominal (TFA), subcutaneous (SFA) and visceral fat area (VFA). Hungarian volunteers (n = 198) aged between 20 and 81 years were enrolled in the study, which was conducted between July and November 2014. All persons underwent anthropometric measurements and computer tomographic (CT) scanning. Sex-specific multiple linear regression analyses were conducted in a subgroup of 98 participants to generate estimation models, then Bland–Altman's analyses were applied in the cross-validation group to compare their predictive efficiency. The variables best predicting VFA were hip circumference, calf circumference and waist-to-hip ratio (WHR) for males (R2 = 0.713; SEE = 5602.1 mm2) and sagittal abdominal diameter (SAD), WHR, thigh circumference and triceps skinfold for females (R2 = 0.845; SEE = 3835.6 mm2). The SFA prediction equation included SAD, thigh circumference and abdominal skinfold for males (R2 = 0.848; SEE = 4124.1 mm2), body mass index and thigh circumference for females (R2 = 0.861; SEE = 5049.7 mm2). Prediction accuracy was the highest in the case of TFA: hip circumference and WHR for males (R2 = 0.910; SEE = 5637.2 mm2), SAD, thigh circumference and abdominal skinfold for females (R2 = 0.915; SEE = 6197.5 mm2) were used in the equations. The results suggested that deviations in the predictions were independent of the amount of adipose tissue. Estimation of abdominal fat depots based on anthropometric traits could provide a cheap, reliable method in epidemiologic research and public health screening to evaluate the risk of cardiometabolic events.  相似文献   

10.
土壤磷可利用性显著影响森林生产力和固碳能力。了解我国森林土壤全磷密度在土壤、气候和植被等不同环境条件下的分布特征,为我国森林质量提升和固碳增汇提供理论指导。收集全国森林土壤调查数据和文献数据中0-20 cm (2571个样地)、20-40 cm (1305个样地)、40-60 cm (701个样地)、60-80 cm (40个样地)和80-100 cm (31个样地)土层土壤全磷含量和容重以估算土壤全磷密度,采用单因素方差分析和Tukey HSD法(或Mann-Whitney U法)检验土壤全磷密度在不同土层、土壤类型、土壤风化程度、气候区、森林起源、森林结构、林龄组、森林类型和树种组之间的差异,利用线性回归分析探讨土壤全磷密度的纬度和经度变化趋势。结果表明:(1)我国森林40-60 cm土层(9.02 t/hm2)土壤全磷密度显著低于表层0-20 cm (13.81 t/hm2)和20-40 cm (10.84 t/hm2)以及深层60-80 cm (11.28 t/hm2)和80-100 cm (12.76 t/hm2)(P<0.001),0-60 cm土层土壤全磷密度表现为中度风化(11.89-18.86 t/hm2)>轻度风化(10.19-11.13 t/hm2)>重度风化(5.44-8.89 t/hm2),在土壤类型间差异显著(P<0.001),铁铝土的值最低(5.44-8.89 t/hm2);(2)土壤全磷密度随着纬度的增加线性增加,但随着经度的增加线性降低(除0-20 cm土层),自热带向北温带也呈增加趋势;(3)我国森林0-60 cm土层土壤全磷密度表现为人工林(11.54-15.49 t/hm2)显著高于天然林(7.14-11.93 t/hm2)及纯林(12.16-15.40 t/hm2)显著高于混交林(6.06-12.15 t/hm2),在林龄组和森林类型间差异显著(P<0.001),0-20 cm和20-40 cm土层中过熟林(23.10 t/hm2和12.54 t/hm2)和落叶针叶林(19.49 t/hm2和15.30 t/hm2)土壤全磷密度最高,40-60 cm土层土壤全磷密度随着林龄的增加而降低。总体来看,我国森林0-100 cm土层土壤全磷密度存在明显的空间分布规律,其在土壤、气候和植被类别间差异显著,这些生物与非生物因素是影响我国森林土壤全磷高低和分布特征的重要因子;延长轮伐期和种植混交林是维持和提高我国森林土壤全磷养分可持续利用的重要途径。  相似文献   

11.
Hydrolysis of organic sulfate esters proceeds by two distinct mechanisms, water attacking at either sulfur (S–O bond cleavage) or carbon (C–O bond cleavage). In primary and secondary alkyl sulfates, attack at carbon is favored, whereas in aromatic sulfates and sulfated sugars, attack at sulfur is preferred. This mechanistic distinction is mirrored in the classification of enzymes that catalyze sulfate ester hydrolysis: arylsulfatases (ASs) catalyze S–O cleavage in sulfate sugars and arylsulfates, and alkyl sulfatases break the C–O bond of alkyl sulfates. Sinorhizobium meliloti choline sulfatase (SmCS) efficiently catalyzes the hydrolysis of alkyl sulfate choline-O-sulfate (kcat/KM = 4.8 × 103 s? 1 M? 1) as well as arylsulfate 4-nitrophenyl sulfate (kcat/KM = 12 s? 1 M? 1). Its 2.8-Å resolution X-ray structure shows a buried, largely hydrophobic active site in which a conserved glutamate (Glu386) plays a role in recognition of the quaternary ammonium group of the choline substrate. SmCS structurally resembles members of the alkaline phosphatase superfamily, being most closely related to dimeric ASs and tetrameric phosphonate monoester hydrolases. Although > 70% of the amino acids between protomers align structurally (RMSDs 1.79–1.99 Å), the oligomeric structures show distinctly different packing and protomer–protomer interfaces. The latter also play an important role in active site formation. Mutagenesis of the conserved active site residues typical for ASs, H218O-labeling studies and the observation of catalytically promiscuous behavior toward phosphoesters confirm the close relation to alkaline phosphatase superfamily members and suggest that SmCS is an AS that catalyzes S–O cleavage in alkyl sulfate esters with extreme catalytic proficiency.  相似文献   

12.
典型亚热带森林生态系统碳密度及储量空间变异特征   总被引:2,自引:0,他引:2  
戴巍  赵科理  高智群  刘康华  张峰  傅伟军 《生态学报》2017,37(22):7528-7538
以浙江省森林生态系统为研究对象,基于GIS网格布点,采集了838个森林样地样本(土壤、枯落物等),结合浙江省森林资源监测中心相关数据,利用地统计学和Moran's I相结合的方法系统研究了浙江省森林生态系统碳密度及碳储量空间变异特征。结果表明:浙江省森林生态系统平均碳密度为145.22 t/hm~2,其中森林植被、土壤、枯落物和枯死木层碳密度分别为27.34、108.89、1.79、1.38 t/hm~2。克里格空间插值和局部Moran's I指数结果表明碳密度空间分布规律呈现从西南向东北方向逐渐递减的趋势,与浙江省地形、地势较为一致,受海拔、树龄、森林类型、台风气候等自然因素和人类活动共同影响。浙江省森林生态系统碳储量为877.19 Tg C,森林植被、土壤、枯落物和枯死木层碳储量分别为203.88、656.20、10.84、6.27 Tg C,分别占总碳储量的23%、75%、1.3%、0.7%。在浙江省森林生态系统碳储量空间分布格局中,土壤层是森林生态系统中最大的碳库,约是森林植被层的3.22倍,是整个浙江省森林生态系统碳储量最主要的贡献者。浙江省森林资源丰富,大多数森林仍处于中幼龄林阶段,碳密度水平较低,但是中幼龄林生长速度较快,加强对全省中幼龄林的健康管理,是未来整体提升浙江省森林生态系统固碳潜力的关键。  相似文献   

13.
不同林龄麻栎林地下部分生物量与碳储量研究   总被引:1,自引:0,他引:1  
王霞  胡海波  张世豪  卢洪霖 《生态学报》2019,39(22):8556-8564
探讨不同林龄麻栎林地下部分根系的生物量与碳储量,为麻栎林的经营管理及碳汇管理等提供科学依据。以江苏省句容市不同林龄(幼龄林、中龄林、近熟林、成熟林)的麻栎林为研究对象,采用全根挖掘法获取麻栎各级根系及灌草层根系,并测定其生物量、碳含量,构建麻栎根系生物量模型,估算麻栎林地下部分根系碳储量及麻栎林群落碳储量。通过11种数学回归模型的比较,构建麻栎各级根系生物量幂回归模型,计算得到幼龄林、中龄林、近熟林、成熟林麻栎根系生物量分别为14.81t/hm~2、41.15t/hm~2、50.36t/hm~2、53.75t/hm~2,各级根系生物量大小顺序是:根桩粗根大根细根;灌木与草本植物根系生物量分别为0.48—1.71t/hm~2、0.13—0.60t/hm~2;不同林龄麻栎林群落根系生物量为15.42—56.06t/hm~2,且随林龄的增大而增大。麻栎根系碳含量大小顺序为:根桩粗根大根细根,且碳含量差异显著;灌木与草本植物根系碳含量分别为41.84%—43.79%、34.03%—38.48%,随林龄变化均无明显变化规律。麻栎林乔木根系碳储量随林龄增大而增大,幼龄林、中龄林、近熟林、成熟林根系碳储量分别为6.01t/hm~2、17.41t/hm~2、21.79t/hm~2、21.99t/hm~2;灌木与草本植物根系碳储量均随林龄增大而增大;幼龄林、中龄林、近熟林、成熟林群落根系碳储量分别为6.26t/hm~2、17.74t/hm~2、22.37t/hm~2、22.94t/hm~2,且乔木层灌木层草本层。麻栎林地下部分根系生物量与碳储量随林龄的增大而增大,幼龄林到近熟林生长过程中生物量与碳储量增加快速,近熟林后生物量与碳素积累缓慢,且与成熟林接近。  相似文献   

14.
Spatially well-informed decisions are essential to sustain and regulate processes and ecosystem services (ES), and to maintain the capacity of ecosystems to supply services. However, spatially explicit ES information is often lacking in decision-making, or exists only as ES maps based on categorical land cover data. Remote sensing (RS) opens new pathways to map ES, in particular biophysical ES supply. We developed an observation-based concept for spatially explicit and continuous ES mapping at landscape scale following the biophysical part of the ES cascade. We used Earth observations in combination with in situ data to map ecosystem properties, functions, and biophysical ES supply. We applied this concept in a case study to map two ES: carbon dioxide regulation and food supply. Based on Earth observations and in situ data, we determined the ecosystem property Sun-Induced chlorophyll Fluorescence (SIF) to indicate ecosystem state and applied scaling models to estimate gross primary production (GPP) as indicator for ecosystem functioning and consequently carbon dioxide regulation and food supply as ES.Resulting ES maps showed heterogeneous patterns in ES supply within and among ecosystems, which were particularly evident within forests and grasslands. All investigated land cover classes were sources of CO2, with averages ranging from ‐66 to ‐748 g C m‐2 yr‐1, after considering the harvest of total above ground biomass of crops and the storage organ, except for forest being a sink of CO2 with an average of 105 g C m‐2 yr‐1. Estimated annual GPP was related to food supply with a maize grain yield average of 9.5 t ha‐1 yr‐1 and a sugar beet root yield of 110 t ha‐1 yr‐1. Validation with in situ measurements from flux towers and literature values revealed a good performance of our approach for food supply (relative RMSE of less than 23%), but also some over- and underestimations for carbon dioxide regulation. Our approach demonstrated how RS can contribute to spatially explicit and continuous ES cascade mapping and suggest that this information could be useful for environmental assessments and decision-making in spatial planning and conservation.  相似文献   

15.
The Golgi ion homeostasis is tightly regulated to ensure essential cellular processes such as glycosylation, yet our understanding of this regulation remains incomplete. Gdt1p is a member of the conserved Uncharacterized Protein Family (UPF0016). Our previous work suggested that Gdt1p may function in the Golgi by regulating Golgi Ca2 +/Mn2 + homeostasis. NMR structural analysis of the polymannan chains isolated from yeasts showed that the gdt1Δ mutant cultured in presence of high Ca2 + concentration, as well as the pmr1Δ and gdt1Δ/pmr1Δ strains presented strong late Golgi glycosylation defects with a lack of α-1,2 mannoses substitution and α-1,3 mannoses termination. The addition of Mn2 + confirmed the rescue of these defects. Interestingly, our structural data confirmed that the glycosylation defect in pmr1Δ could also completely be suppressed by the addition of Ca2 +. The use of Pmr1p mutants either defective for Ca2 + or Mn2 + transport or both revealed that the suppression of the observed glycosylation defect in pmr1Δ strains by the intraluminal Golgi Ca2 + requires the activity of Gdt1p. These data support the hypothesis that Gdt1p, in order to sustain the Golgi glycosylation process, imports Mn2 + inside the Golgi lumen when Pmr1p exclusively transports Ca2 +. Our results also reinforce the functional link between Gdt1p and Pmr1p as we highlighted that Gdt1p was a Mn2 + sensitive protein whose abundance was directly dependent on the nature of the ion transported by Pmr1p. Finally, this study demonstrated that the aspartic residues of the two conserved motifs E-x-G-D-[KR], likely constituting the cation binding sites of Gdt1p, play a crucial role in Golgi glycosylation and hence in Mn2 +/Ca2 + transport.  相似文献   

16.
In this paper, we describe a method for primary culture of a well differentiated electrically tight rabbit vocal fold epithelial cell multilayer and the measurement of transepithelial electrical resistance (TEER) for the evaluation of epithelial barrier function in vitro. Rabbit larynges were harvested and enzymatically treated to isolate vocal fold epithelial cells and to establish primary culture. Vocal fold epithelial cells were co-cultured with mitomycin C-treated feeder cells on collagen-coated plates. After 10–14 days in primary culture, cells were passaged and cultured until they achieved 70–90% confluence on collagen-coated plates. Epithelial cells were then passaged onto collagen-coated cell culture inserts using 4.5 cm2 membrane filters (1.0 μm pore size) with 10% fetal bovine serum or 30 μg/mL bovine pituitary extract to investigate the effects of growth-promoting additives on TEER. Additional experiments were performed to investigate optimal seeding density (1.1, 2.2, 4.4, or 8.9 × 105 cells/cm2), the effect of co-culture with feeder cells, and the effect of passage number on epithelial barrier function. Characterization of in vitro cultures was performed using hematoxylin and eosin staining and immunostaining for vocal fold epithelial cell markers and tight junctions. Results revealed higher TEER in cells supplemented with fetal bovine serum compared to bovine pituitary extract. TEER was highest in cells passaged at a seeding density of 2.2 × 104 cells/cm2, and TEER was higher in cells at passage two than passage three. Ultrastructural experiments revealed a well-differentiated epithelial cell multilayer, expressing the epithelial cell markers CK13, CK14 and the tight junction proteins occludin and ZO-1.  相似文献   

17.
Crabs belong to the superfamily Ocypodoidea are a significant component of benthic fauna and considered as ecosystem engineers because of their dynamic role as an active burrower in mangrove and estuarine environment. The current investigation was to evaluate the crab burrow density, diameter and total area of burrow opening along the coast of Pakistan. The variations in burrow properties and their relation to sediment characteristics were also evaluated to recognize the most influencing variables of sediments that effects on crab burrows. All crab burrow and sediment characteristics differed significantly (p < 0.05) among the monitoring sites. Regression analysis showed that crab density was significantly correlated with burrow density (P < 0.001). Moreover, burrow density was noticed significantly greater (p < 0.05) than crab density. Pearson correlation analysis reveals that moisture, porosity, organics, sand and mean grain size observed as most influencing the features of sediment to determine the ecological functioning of crab burrows in mangrove and mudflats of Pakistan.  相似文献   

18.
This study aimed to evaluate the effect of commercially used entomopathogens on Africanized Apis mellifera L. (Hymenoptera: Apidae). Four bioassays were performed: 1) pulverized entomopathogens on A. mellifera; 2) entomopathogens sprayed on a smooth surface; 3) entomopathogens sprayed on soy leaves; and 4) entomopathogens mixed with candy paste (sugar syrup). Five treatments were prepared: sterile distilled water (control), distilled water sterilized with Tween® 80 (0.01%), and the commercial entomopathogens Metarhizium anisopliae E9 (1.0 × 109 conidia mL?1), Beauveria bassiana PL63 (1.0 × 108 conidia mL?1) and Bacillus thuringiensis var. kurstaki HD-1 (3.0 × 108 spores mL?1). Each treatment consisted of five repetitions, with 20 workers per repetition, which were stored in a plastic box and, later, in a biological oxygen demand (B.O.D.) incubator (27 ± 2 °C, RH of 60% ± 10%, 12-h photophase). The mortality of the workers was evaluated from 1 h to 240 h, and the data were analyzed using Bayesian inference. The workers killed by the ingestion of candy paste contaminated with the pathogens (products) were randomly separated and selected for the removal of the midgut. Each midgut was fixed in Bouin's solution and prepared for histology. B. bassiana was verified to reduce the survival of A. mellifera workers in all bioassays. Moreover, M. anisopliae reduced the survival of A. mellifera workers directly sprayed, on a smooth surface and mixed with candy. B. thuringiensis reduced A. mellifera survival on a smooth surface and mixed with candy paste. However, its effects were lower than that observed by B. bassiana. The treatments with the biological products did not induce morphometric alterations in the midgut of A. mellifera.  相似文献   

19.
《农业工程》2014,34(4):232-238
Coarse woody debris (CWD) characteristics are expected to reflect forest stand features. Few studies evaluated logging-induced stand characteristics of secondary coniferous forests by quantifying the quality and quantity in CWD. After selective logging, the form of secondary forest of Pinus tabulaeformis in the Qinling Mountains is inferior and the regeneration is poor. We measured the CWD characteristics of the forest which had an average CWD biomass amount of 12.56 t hm−2, and was predominated by abundant logs (65.68%), followed by snags (33.13%). The CWD biomass of P. tabulaeformis and Toxicodendron vernicifluum was significantly higher than that of other species, which took up 85.51% of the total. Although there was no significant difference among different diameter sizes (P > 0.05), the CWD biomass of diameter 30–40 cm occupied 46.26% of the total (5.81 t hm−2). Similarly, the CWD biomass of decay class I and II accounted for 39.89% (5.01 t hm−2) and 33.04% (4.15 t hm−2) of the total CWD biomass respectively, despite no significant difference among those 5 decay classes (P > 0.05). The results indicated that the combination of young forest developmental stage caused by past selective logging and natural and anthropogenic disturbances such as strong wind, tapping lacquer, firewood collection, and illegal tree felling played a crucial role in distribution characteristics of CWD in this secondary forest of P. tabulaeformis.  相似文献   

20.
《农业工程》2014,34(3):170-177
In order to evaluate the potential effects of rest grazing on organic carbon storage on the Stipa baicalensis steppe in Inner Mongolia, compared the S. baicalensis steppes after rest grazing for 3 years, 6 years, and 9 years, using potassium dichromate heating method, this study analyzed the organic carbon storage of plant and soil in the steppes among different periods of rest grazing. The results indicated that as the rest grazing years prolonged, the biomass included above-ground parts, litters and underground plant parts(roots) of the plant communities all increased, meanwhile the carbon content of the biomass increased with the rest grazing years prolonged. For the zero rest grazing (RG0) steppe and the steppes after a rest grazing of 3 years (RG3a), 6 years (RG6a), 9 years (RG9a), the carbon storage in above-ground parts of plant communities were 42.60 g C/m2, 66.33 g C/m2, 83.46 g C/m2, 100.29 g C/m2 respectively; the carbon storage of litters were 7.85 g C/m2, 9.12 g C/m2, 9.18 g C/m2, 11.54 g C/m2 separately; the carbon storage of underground plant parts (0–100 cm) were 281.40 g C/m2, 576.38 g C/m2, 745.33 g C/m2, 1279.61 g C/m2 respectively; and the carbon storage in 0–100 cm soil were 22991.14 g C/m2, 24687.75 g C/m2, 26564.86 g C/m2,33041.55 g C/m2. The results suggested that as the rest grazing years prolonged, the organic carbon storage in plant communities and soil increased. The carbon storage of underground plant parts and soil organic carbon mainly concentrated in 0–40 cm soil. After rest grazing for 3 years, 6 years, and 9 years, the increased soil organic carbon were as the 81.14%, 85.84%, and 89.46% of the total increased carbon; From the perspective of carbon sequestration cost, the total cost of RG3a, RG6a and RG9a were 2903.40 RMB/hm2, 5806.80 RMB/hm2, and 8710.20 RMB/hm2. The cost reduced with the extension of rest grazing years, 0.17 RMB/kg C, 0.16 RMB/kg C, 0.09 RMB/kg C for RG3a, RG6a and RG9a respectively. From the growth characteristics of grassland plants, the spring was one of the two avoid grazing periods, timely rest grazing could effectively restore and update grassland vegetation, and was beneficial to the sustainable use of grassland. From the available data, the organic carbon storage of RG9a was the highest, while the cost of carbon sequestration was the lowest. Therefore, spring rest grazing should be encouraged to continue for it was proved to be a very efficient grassland use measures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号