首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interactions between trees and ectomycorrhizal fungi are critical to the growth and survival of both partners. However, ectomycorrhizal symbiosis has barely been explored in endangered trees, and no information is available regarding soil spore banks of ectomycorrhizal fungi from forests of threatened trees. Here, we evaluated soil spore banks of ectomycorrhizal fungi from endangered Japanese Douglas-fir (Pseudotsuga japonica) forests using bioassay approaches with congeneric P. menziesii and Pinus densiflora seedlings in combination with molecular identification techniques. Rhizopogon togasawariana was predominant in soil propagule banks and was found in all remaining P. japonica forests when assayed with P. menziesii, while no colonization of this fungus was observed on Pinus seedlings. Given the observed specificity of R. togasawariana for P. menziesii and its phylogenetic position within the Pseudotsuga-specific Rhizopogon lineage, its geographical distribution is likely restricted to the remaining Japanese Douglas-fir forests, indicating a high extinction risk for this fungus as well as its endangered host. Spore banks of R. togasawariana remained highly infective after preservation for 1 year or heat treatment at 70 °C, suggesting an ecological strategy of establishing ectomycorrhizal associations on regenerating Japanese Douglas-fir seedlings after disturbance, as observed in other Rhizopogon–Pinaceae combinations. Therefore, the regeneration of Japanese Douglas-fir seedlings may depend largely on the soil spore banks dominated by R. togasawariana, which has co-evolved with the Japanese Douglas-fir for over 30 million years. More attention must be paid to underground ectomycorrhizal fungi for the conservation of endangered tree species, especially in the era of human-induced mass extinction.  相似文献   

2.
As it is well known, arbuscular mycorrhizal (AM) colonization can be initiated from the following three types of fungal propagules: spores, extraradical mycelium (ERM), and mycorrhizal root fragments harboring intraradical fungal structures. It has been shown that biomass allocation of AM fungi (AMF) among these three propagule types varies between fungal taxa, as also differs the ability of the different AMF propagule fractions to initiate new colonizations. In this study, the composition of the AMF community in the roots of rosemary (Rosmarinus officinalis L., a characteristic Mediterranean shrub), inoculated with the three different propagule types, was analyzed. Accordingly, cuttings from this species were inoculated with either AMF spores, ERM, or colonized roots extracted from a natural soil. The AMF diversity within the rosemary roots was characterized using terminal restriction fragment length polymorphism (T-RFLP) of the small subunit (SSU) rDNA region. The AMF community established in the rosemary plants was significantly different according to the type of propagule used as inoculum. AMF taxa differed in their ability to initiate new colonizations from each propagule type. Results suggest different colonization strategies for the different AMF families involved, Glomeraceae and Claroideoglomeraceae colonizing mainly from colonized roots whereas Pacisporaceae and Diversisporaceae from spores and ERM. This supports that AMF taxa show contrasting life-history strategies in terms of their ability to initiate new colonizations from the different propagule types. Further research to fully understand the colonization and dispersal abilities of AMF is essential for their rational use in ecosystem restoration programs.  相似文献   

3.
Pinus heldreichii H. Christ. is a tertiary relict and endemic to the western Balkans and southern part of Apennine peninsula. It is an Oro-Mediterranean species occurring at altitudes between 1200 and 2000 m and primarily on calcareous soils. P. heldreichii forests are of key importance for nature conservation, protection against gravitational natural hazards, landscape conservation and recreation. However, these forests are currently highly fragmented and require the elaboration of guidelines for sustainable management and conservation that should be based on scientific knowledge. Ectomycorrhizal (ECM) fungi are important for successful regeneration, establishment and growth of P. heldreichii. The aim of this study was to investigate ECM and other fungal communities associated with fine roots of P. heldreichii at two different sites in Ku?i Mountains, south-eastern Montenegro. Roots and soil were sampled from 70 trees. Soil was subjected to chemical analyses, fine roots were morphotyped and selected root morphotypes were Sanger sequenced using ITS rDNA as a marker. Sequencing resulted in 431 high-quality sequences representing 147 different fungal species including a large number of ECM species. The most common species were ECM fungi Lactarius sanguifluus (5.1%), Wilcoxina rehmii (4.2%) and Amphinema sp. KK28 (3.2%). Climatic factors were similar between the sites, but site size, inclination, elevation, tree age (old growth versus young trees), and some soil characteristics differed. The results demonstrate relatively high fungal diversity and site-specific effects on abundance and composition of fungal communities in fine roots of P. heldreichii growing in high-altitude marginal habitats.  相似文献   

4.
赵南星  韩其晟  黄建 《生态学杂志》2017,28(12):3855-3861
为更好地恢复和保存白皮松天然林,在陕西省白皮松残存林地采集根际土壤,采用幼苗检测法获取土壤外生菌根真菌繁殖体,用形态观察分类与ITS-PCR-sequencing相结合的方法进行菌根鉴定,研究白皮松林地外生菌根真菌土壤繁殖体库的组成.结果表明: 在白皮松幼苗菌根中共获得73个特异性序列;按照97%的相似度阈值,将序列划分为12个可操作分类单元(OTUs);稀疏曲线分析表明,本研究基本获得了白皮松土壤外生菌根繁殖体库的多样性.常见种有土生空团菌、Tomentella sp.、Tuber sp.等.出现频率最高的一个OTU(80%)与已知种类相似度较低(75%),说明其可能是一个新的菌根菌种类.白皮松残存天然林地的外生菌根繁殖体库中具有其他松科植物土壤繁殖体库常见的种类,但是频率最高的种类未能鉴定到已知属或科,说明白皮松菌根繁殖体库具有其宿主特异性.这种群落特异构成也说明研究和利用白皮松土壤外生菌根真菌繁殖体库具有特殊性和重要性.  相似文献   

5.
Ectomycorrhizal (EM) fungi are ubiquitous in temperate and boreal forests, comprising over 20,000 species forming root symbiotic associations with Pinaceae and woody angiosperms. As much as 100 different EM fungal species can coexist and interact with the same tree species, forming complex multispecies networks in soils. The degree of host specificity and structural properties of these interaction networks (e.g., nestedness and modularity) may influence plant and fungal community assembly and species coexistence, yet their structure has been little studied in northern coniferous forests, where trees depend on EM fungi for nutrient acquisition. We used high‐throughput sequencing to characterize the composition and diversity of bulk soil and root‐associated fungal communities in four co‐occurring Pinaceae in a relic foredune plain located at Îles de la Madeleine, Québec, Canada. We found high EM fungal richness across the four hosts, with a total of 200 EM operational taxonomic units (OTUs), mainly belonging to the Agaricomycetes. Network analysis revealed an antinested pattern in both bulk soil and roots EM fungal communities. However, there was no detectable modularity (i.e., subgroups of interacting species) in the interaction networks, indicating a low level of specificity in these EM associations. In addition, there were no differences in EM fungal OTU richness or community structure among the four tree species. Limited shared resources and competitive exclusion typically restrict the number of taxa coexisting within the same niche. As such, our finding of high EM fungal richness and low host specificity highlights the need for further studies to determine the mechanisms enabling such a large number of EM fungal species to coexist locally on the same hosts.  相似文献   

6.
Niche differentiation in soil horizons, host species and natural nutrient gradients contribute to the high diversity of ectomycorrhizal fungi in boreal forests. This study aims at documenting the diversity and community composition of ectomycorrhizal fungi of Norway spruce ( Picea abies ) and silver birch ( Betula pendula ) seedlings in five most abundant microsites in three Estonian old-growth forests. Undisturbed forest floor, windthrow mounds and pits harboured more species than brown- and white-rotted wood. Several species of ectomycorrhizal fungi were differentially represented on either hosts, microsites and sites. Generally, the most frequent species in dead wood were also common in forest floor soil. Ordination analyses suggested that decay type determined the composition of EcM fungal community in dead wood. Root connections with in-growing mature tree roots from below affected the occurrence of certain fungal species on seedling roots systems in dead wood. This study demonstrates that ectomycorrhizal fungi differentially establish in certain forest microsites that is attributable to their dispersal and competitive abilities. Elevated microsites, especially decayed wood, act as seed beds for both ectomycorrhizal forest trees and fungi, thus affecting the succession of boreal forest ecosystems.  相似文献   

7.
Avis PG  Charvat I 《Mycologia》2005,97(2):329-337
The inoculum of ectomycorrhizal (EM) fungi was examined in a 16 y long nitrogen fertilization experiment maintained in a temperate oak savanna. To measure EM fungal inoculum, bur oak seedlings were grown in three types of bioassays: (i) intact soil cores that measure inoculum such as spores, mycelia and mycorrhizal roots; (ii) resistant propagule bioassays that measure inoculum types resistant to soil drying; and (iii) previously mycorrhizal root bioassays that measure the ability of EM fungi to colonize new roots from mycorrhizal roots. Colonization of bur oak seedlings was characterized by morphotyping and where necessary by restriction analysis and internal transcribed spacer (ITS) sequencing. Fourteen morphotypes were found in intact soil core bioassays with species of Cortinarius, Cenococcum and Russula abundant. Five morphotypes were found in resistant propagule bioassays with Cenococcum, a thelephoroid morphotype and a Wilcoxina-like ascomycete abundant and frequent. In intact soil core bioassays total percent root colonization and number of morphotypes were not affected by N supply in 2000 and 2001. However the composition of EM fungi colonizing oak seedling roots was different with increased N supply such that Russula spp. (primarily Russula aff. amoenolens) were most abundant at the highest level of N supply. Dominant Russula spp. did not colonize any roots in resistant propagule bioassays but did colonize oak seedling roots from previously mycorrhizal roots. Results suggest that in this savanna N supply can influence the kinds of inoculum propagules present and thereby might affect the dynamics of ectomycorrhizal communities by differentially influencing reproductive and colonization strategies.  相似文献   

8.
Plant–mycorrhizal fungal interactions are ubiquitous in forest ecosystems. While ectomycorrhizal plants and their fungi generally dominate temperate forests, arbuscular mycorrhizal symbiosis is common in the tropics. In subtropical regions, however, ectomycorrhizal and arbuscular mycorrhizal plants co-occur at comparable abundances in single forests, presumably generating complex community structures of root-associated fungi. To reveal root-associated fungal community structure in a mixed forest of ectomycorrhizal and arbuscular mycorrhizal plants, we conducted a massively-parallel pyrosequencing analysis, targeting fungi in the roots of 36 plant species that co-occur in a subtropical forest. In total, 580 fungal operational taxonomic units were detected, of which 132 and 58 were probably ectomycorrhizal and arbuscular mycorrhizal, respectively. As expected, the composition of fungal symbionts differed between fagaceous (ectomycorrhizal) and non-fagaceous (possibly arbuscular mycorrhizal) plants. However, non-fagaceous plants were associated with not only arbuscular mycorrhizal fungi but also several clades of ectomycorrhizal (e.g., Russula) and root-endophytic ascomycete fungi. Many of the ectomycorrhizal and root-endophytic fungi were detected from both fagaceous and non-fagaceous plants in the community. Interestingly, ectomycorrhizal and arbuscular mycorrhizal fungi were concurrently detected from tiny root fragments of non-fagaceous plants. The plant–fungal associations in the forest were spatially structured, and non-fagaceous plant roots hosted ectomycorrhizal fungi more often in the proximity of ectomycorrhizal plant roots. Overall, this study suggests that belowground plant–fungal symbiosis in subtropical forests is complex in that it includes “non-typical” plant–fungal combinations (e.g., ectomycorrhizal fungi on possibly arbuscular mycorrhizal plants) that do not fall within the conventional classification of mycorrhizal symbioses, and in that associations with multiple functional (or phylogenetic) groups of fungi are ubiquitous among plants. Moreover, ectomycorrhizal fungal symbionts of fagaceous plants may “invade” the roots of neighboring non-fagaceous plants, potentially influencing the interactions between non-fagaceous plants and their arbuscular-mycorrhizal fungal symbionts at a fine spatial scale.  相似文献   

9.
There is growing evidence demonstrating the diversity of foliar endophytic fungi and their ecological roles in the survival of tree seedlings. However, the factors that shape fungal communities in tree seedlings within natural forest ecosystems remain poorly understood. Here, we evaluated the composition of foliar endophytic fungi growing in current-year seedlings of Cornus controversa and Prunus grayana in a cool temperate deciduous forest through a seed-sowing experiment and fungal isolation. The composition of endophytic fungi was affected by canopy tree species, canopy openness, and time after germination. In total, 27 and 22 fungal taxa were isolated from C. controversa and P. grayana seedlings, respectively. The dominant fungal taxa in both seedling species were Colletotorichum spp., and their isolation frequencies were higher under C. controversa canopies than under P. grayana canopies; the frequencies also increased with time after germination. These results suggest that overstory tree species strongly influences the endophytic fungal communities of understory seedlings.  相似文献   

10.
Alnus glutinosa (black alder) is a mycorrhizal pioneer tree species with tolerance to high concentrations of salt in the soil and can therefore be considered to be an important tree for the regeneration of forests areas devastated by excessive salt. However, there is still a lack of information about the ectomycorrhizal fungi (EMF) associated with mature individuals of A. glutinosa growing in natural saline conditions. The main objective of this study was to test the effect of soil salinity and other physicochemical parameters on root tips colonized by EMF, as well as on the species richness and diversity of an EMF community associated with A. glutinosa growing in natural conditions. We identified a significant effect of soil salinity (expressed as electrical conductivity: ECe and EC1:5) on fungal taxa but not on the total level of EM fungal colonization on roots. Increasing soil salinity promoted dark-coloured EMF belonging to the order Thelephorales (Tomentella sp. and Thelephora sp.). These fungi are also commonly found in soils polluted with heavy-metal. The ability of these fungi to grow in contaminated soil may be due to the presence of melanine, a natural dark pigment and common wall component of the Thelephoraceae that is known to act as a protective interface between fungal metabolism and biotic and abiotic environmental stressors. Moreover, increased colonization of fungi belonging to the class of Leotiomycetes and Sordiomycetes, known as endophytic fungal species, was observed at the test sites, that contained a larger content of total phosphorus. This observation confirms the ability of commonly known endophytic fungi to form ectomycorrhizal structures on the roots of A. glutinosa under saline stress conditions.  相似文献   

11.
Separating the effects of environmental factors and spatial distance on microbial composition is difficult when these factors covary. We examined the composition of ectomycorrhizal (EM) fungi along elevation gradients on geographically distant mountains to clarify the effect of climate at the regional scale. Soil cores were collected from various forest types along an elevation gradient in southwestern Japan. Fungal species were identified by the internal transcribed spacer regions of the rDNA using direct sequencing. The occurrence of fungal species in this study was compared with a previous study conducted on a mountain separated by ∼550 km. In total, we recorded 454 EM fungi from 330 of 350 soil cores. Forty-seven fungal species (∼20% of the total excluding singletons) were shared between two mountains, mostly between similar forest types on both mountains. Variation partitioning in redundancy analysis revealed that climate explained the largest variance in EM fungal composition. The similarity of forest tree composition, which is usually determined by climatic conditions, was positively correlated with the similarity of the EM fungal composition. However, the lack of large host effects implied that communities of forest trees and EM fungi may be determined independently by climate. Our data provide important insights that host plants and mutualistic fungi may respond to climate change idiosyncratically, potentially altering carbon and nutrient cycles in relation to the plant–fungus associations.  相似文献   

12.
Incorporating functional values in biodiversity monitoring systems could add novel perspectives of the status of biodiversity in conservation areas. Stable frequencies of large foliose nitrogen-fixing cyanolichens likely have positive effects on the nitrogen budget of forests and provide food, material and shelter for invertebrates, gastropods and birds. Stable volumes of deadwood and frequencies of associated fungi provide an important supporting function for ecosystem services such as nutrient cycling, carbon storage and soil formation. Based on regional monitoring data from boreal old-growth forest nature reserves and key habitats, we tested for changes in the frequency of various functionally important substrates and species over time. We detected significant reductions in the frequency of indicator cyanolichens occurring on deciduous trees already after 10 years in key habitats, despite non-significant changes in their host substrates. Frequencies of indicator pendulous lichens Alectoria sarmentosa and Bryoria nadvornikiana had also decreased in key habitats, despite overall stable volumes of large conifer host trees. Lichen reductions were more pronounced in the smaller key habitats compared to the larger formally protected nature reserves, likely due to degrading fragmentation and isolation effects. In contrast to these lichens, the average frequencies of old-growth forest indicator fungi decaying coniferous deadwood and common fungi on deciduous trees (Fomes fomentarius) and coniferous trees (Fomitopsis pinicola) remained unchanged. The studied cyanolichens and fruiting fungi generally had similar extinction rates over 10 years, whilst only cyanolichens had substantially lower colonization rates. Amid a severely fragmented landscape, conservation areas seem to struggle in preserving some of the basic old-growth forest values.  相似文献   

13.
Distributions of lucidophyllous species are limited due to the fragmentation of laurel forest. On Komayama Hill in central Japan, we evaluated the colonization of typical lucidophyllous vascular plants from a 350-year-old laurel forest into adjacent abandoned secondary forest for conservation and restoration purposes. A total of 14 consecutive subplots were established along the vegetation border between the two forests (length, 30 m; width, 5 m), extending 70 m into the secondary forest; 18 quadrats of old-growth forest were surveyed. Edge effects of old-growth forest were found to play an important role in re-establishing lucidophyllous saplings and seedlings in the secondary forest. In particular, the abundances of the four dominant canopy species of the old-growth forest significantly decreased with increasing distance. Hence, they are expected to colonize further into the secondary forest and, ultimately, to dominate the canopy. However, the number of lucidophyllous species did not change with distance. Species such as Ficus nipponica, Damnacanthus indicus, Ilex integra, and Lemmaphyllum microphyllum were near-completely or completely limited to the old-growth forest. They are known to be negatively affected by forest fragmentation and were observed to be struggling to colonize the exterior of the old-growth forest even after 60 years of abandonment. Their absence highlighted the limited colonization capacities of some old-growth forest species and underlined the time required for habitat restoration following human disturbance. We conclude that it is important to consider the population dynamics of dominant canopy species and the colonization of these interior species when assessing the habitat expansion of lucidophyllous species and hence the restoration of degraded lands.  相似文献   

14.
Knowledge on the diversity and ecology of microfungi associated with soil-dwelling mites is rather limited. To get insights into associations between the two highly diverse groups, we studied composition and potential function of mite-associated fungal communities occurring in soil. Two different mite species living in temperate region pine forest soil were screened for associated fungi. The fungal community was assessed by restriction fragment length polymorphism (RFLP) analyses in a predatory (Leptogamasus obesus) and a predominantly saprobic (Oppiella subpectinata) mite species as well as in the organic soil layer. Key fungi were identified by sequencing, and community composition was exemplarily compared between the RFLP and a 454 metabarcoding approach. Composition of the fungal communities differed between mite species and between mites and organic soil layer. The mites were predominantly associated with Zygomycota, less frequently with Ascomycota, and rarely with Basidiomycota. The bulk soil was colonized by roughly equal proportions of the three phyla. Fungal taxa being known to exhibit chitinolytic activity were predominantly restricted to mites. Compositional and functional differences between the communities suggest that mites represent a particular microhabitat for fungi, the “acarosphere.” This mobile habitat may contribute to nutrient cycling by combining fungal and animal decomposition activities and serve as vector for soil-inhabiting fungi.  相似文献   

15.
Ectomycorrhizal symbiosis of tropical African trees   总被引:1,自引:0,他引:1  
  相似文献   

16.
Mycorrhizal symbiosis often displays low specificity, except for mycoheterotrophic plants that obtain carbon from their mycorrhizal fungi and often have higher specificity to certain fungal taxa. Partially mycoheterotrophic (or mixotrophic, MX) plant species tend to have a larger diversity of fungal partners, e.g., in the genus Pyrola (Monotropoideae, Ericaceae). Preliminary evidence however showed that the Japanese Pyrola japonica has preference for russulacean fungi based on direct sequencing of the fungal internal transcribed spacer (ITS) region from a single site. The present study challenges this conclusion using (1) sampling of P. japonica in different Japanese regions and forest types and (2) fungal identification by ITS cloning. Plants were sampled from eight sites in three regions, in one of which the fungal community on tree ectomycorrhizal (ECM) tips surrounding P. japonica was also analyzed. In all, 1512 clone sequences were obtained successfully from 35 P. japonica plants and 137 sequences from ECM communities. These sequences were collectively divided into 74 molecular operational taxonomic units (MOTUs) (51 and 33 MOTUs, respectively). MOTUs from P. japonica involved 36 ECM taxa (96 % of all clones), and 17 of these were Russula spp. (76.2 % of all clones), which colonized 33 of the 35 sampled plants. The MOTU composition significantly differed between P. japonica and ECM tips, although shared species represented 26.3 % of the ECM tips community in abundance. This suggests that P. japonica has a preference for russulacean fungi.  相似文献   

17.
The ecological importance of ectomycorrhizal (EM) fungi in tropical ecosystems is increasingly recognized, but few studies have used molecular methods to examine EM fungal communities in tropical forests. The diversity and composition of the EM community on Quercus crassifolia in a tropical montane cloud forest in southern Mexico were characterized using DNA sequencing of single root tips. Individual root tips commonly harbored multiple fungal species that resulted in mixed polymerase chain reaction (PCR) products. By cloning and performing gel extractions on mixed PCR samples, we identified two or more EM fungi on 26% of the root tips. When non-EM fungi were considered, this figure increased to 31% of root tips. A total of 44 EM taxa and nine non-EM taxa were detected on roots from 21 soil cores (104 root tips). Taxa in the families Russulaceae, Cortinariaceae, Inocybaceae, and Thelephoraceae were frequent. This is the first study to characterize the belowground EM community in a tropical montane cloud forest. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Tropical dry forests are strongly affected by seasonality, but its effects on belowground communities are poorly studied. Thus, the objective of this study was to reveal the effect of the season (dry versus wet) on the mycorrhizal status of roots and their potential colonization, and to determine the composition and abundance of spore-based communities of arbuscular mycorrhizal fungi (AMF) in rhizospheric soil of two dominant woody species in caatinga communities (tropical dry forest of the Brazilian Northeast). Soil and root samples were taken four times in each season (dry and wet). In the cases of the number of glomerospores and the number of infective propagules of AMF, there were significant differences between the hosts, with greater values observed in the rhizosphere of Commiphora leptophloeos than Mimosa tenuiflora. Mycorrhizal colonization and the number of infective propagules of AMF differed also between the seasons, being higher in the dry than the wet season. In total, fourteen AMF species were found in the rhizosphere of C. leptophloeos and twelve species were associated with M. tenuiflora. There was a predominance of the fungal genus Acaulospora, with seven species, followed by Gigaspora and Glomus. The species studied and the seasons differ in the composition and structure of the AMF community in the rhizosphere of the plants. The ecological significance of those differences needs to be examined further.  相似文献   

19.
外生菌根菌与森林树木的相互关系   总被引:23,自引:2,他引:23  
生态系统的每个过程都伴随着各种微生物的活动,其中最重要的功能群之一是菌根真菌(菌根菌)。一般认为,菌根菌是自然界多数植物生存最基本的组成部分,陆地上约90%以上的高等植物都具有菌根菌。这些菌类的菌丝体与植物根系结合形成菌根,使植物生长成为可能,使不同种类植物的根系联在一起。根据菌根菌入侵植物根系的方式及菌根的形态特征,菌根可分为外生菌根、内生菌根和内外生菌根3组共7种类型。外生菌根主要出现在松科、桦木科、壳斗科等树种的森林生态系统中,在根系表面形成菌丝鞘,部分菌丝进入根系皮层细胞间隙形成哈氏网表面。菌根菌剂在森林经营中得到广泛地应用。外生菌根菌对森林树木的作用可归纳为:1)促进造林或育苗成活与生长;2)提高森林生态系统中植物的多样性、稳定性和生产力;3)对森林生态系统的综合效应,主要表现在增加植物一土壤联结,改善土壤结构,促进土壤微生物,增强植物器官的功能;4)抗拮植物根部病害病原菌等。树木与菌根菌相互关系研究主要包括:1)菌根共生的机理;2)菌根菌在退化森林生态系统恢复与改造中的作用;3)菌根菌的分布格局与森林生态系统服务功能的关系;4)菌根菌对森林生态系统的综合效应,如菌根菌与森林植物群落结构、物种多样性以及森林系统稳定性和生产力的研究。  相似文献   

20.
The effects of vegetation types and environmental factors on carabid beetle (Coleoptera: Carabidae) communities were studied. Carabid beetles were collected using pitfall traps (total 2844 trapping days) and seven microenvironmental factors were measured in four vegetation types: grassland, natural evergreen coniferous forest (Pinus densiflora), deciduous broad-leaved natural forest (Quercus crispula, Betula platyphylla, Alnus japonica, or Fagus crenata), and deciduous coniferous plantation (Larix kaempferi) in cool temperate Japan. These four vegetation types provided a novel comparison between natural forests and plantations because the vast majority of related studies have investigated only deciduous broad-leaved natural forests and evergreen coniferous plantations. PERMANOVA indicated that vegetation types affected carabid community composition. Ordination plots showed that community composition differed greatly between grassland and forest vegetation types, but that community composition in the plantation forest overlapped with that of natural forest types. Characteristics differentiating the grassland included a high proportion of winged species and a low mean carabid body weight. Among the examined environmental factors, litter depth, soil water content, and depth of the soil A-horizon had large effects on carabid communities. These results suggest that the effect of afforestation on carabid communities in cool temperate Japan might be insignificant compared with the effects of cover types (deciduous vs. evergreen) and microenvironmental factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号