首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
FPF1 modulates the competence to flowering in Arabidopsis   总被引:6,自引:0,他引:6  
During the transition to flowing the FPF1 gene is expressed in the peripheral zone of apical meristems and in floral meristems of Arabidopsis. Constitutive expression of FPF1 causes early flowering in Arabidopsis under both long-day and short-day conditions and leads to a shortened juvenile phase as measured by the trichome distribution on the abaxial leaf surface. In the classical late flowering mutants, overexpression of FPF1 compensates partially for the late flowering phenotype, indicating that FPF1 acts downstream or in a parallel pathway to the mutated genes. The co-overexpression of 35S::AP1 with 35S::FPF1 leads to a synergistic effect on the shortening of the time to flowering under short-day conditions. The co-overexpression of 35S::FPF1 and 35S::LFY, however, shows only an additive reduction of flowering time and the conversion of nearly every shoot meristem, except the inflorescence meristem, to a floral meristem under the same light conditions. In addition, the constitutive expression of FPF1 attenuates the severe lfy-1 phenotype under short days and phenocopies to a great extent the lfy-1 mutant grown under long-day conditions. Thus, we assume that FPF1 modulates the competence to flowering of apical meristems.  相似文献   

3.
Flowering plants produce floral meristems in response to intrinsic and extrinsic flowering inductive signals. In Arabidopsis, the floral meristem identity genes LEAFY (LFY) and APETALA1 (AP1) are activated to play a pivotal role in specifying floral meristems during floral transition. We show here that the emerging floral meristems require AP1 to partly specify their floral identities by directly repressing a group of flowering time genes, including SHORT VEGETATIVE PHASE (SVP), AGAMOUS-LIKE 24 (AGL24) and SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1). In wild-type plants, these flowering time genes are normally downregulated in emerging floral meristems. In the absence of AP1, these genes are ectopically expressed, transforming floral meristems into shoot meristems. By post-translational activation of an AP1-GR fusion protein and chromatin immunoprecipitation assays, we further demonstrate the repression of these flowering time genes by induced AP1 activity and in vivo AP1 binding to the cis-regulatory regions of these genes. These findings indicate that once AP1 is activated during the floral transition, it acts partly as a master repressor in floral meristems by directly suppressing the expression of flowering time genes, thus preventing the continuation of the shoot developmental program.  相似文献   

4.
5.
6.
A MADS domain gene involved in the transition to flowering in Arabidopsis   总被引:20,自引:0,他引:20  
Flowering time in many plants is triggered by environmental factors that lead to uniform flowering in plant populations, ensuring higher reproductive success. So far, several genes have been identified that are involved in flowering time control. AGL20 (AGAMOUS LIKE 20) is a MADS domain gene from Arabidopsis that is activated in shoot apical meristems during the transition to flowering. By transposon tagging we have identified late flowering agl20 mutants, showing that AGL20 is involved in flowering time control. In previously described late flowering mutants of the long-day and constitutive pathways of floral induction the expression of AGL20 is down-regulated, demonstrating that AGL20 acts downstream to the mutated genes. Moreover, we can show that AGL20 is also regulated by the gibberellin (GA) pathway, indicating that AGL20 integrates signals of different pathways of floral induction and might be a central component for the induction of flowering. In addition, the constitutive expression of AGL20 in Arabidopsis is sufficient for photoperiod independent flowering and the over-expression of the orthologous gene from mustard, MADSA, in the classical short-day tobacco Maryland Mammoth bypasses the strict photoperiodic control of flowering.  相似文献   

7.
Determination of Arabidopsis floral meristem identity by AGAMOUS.   总被引:18,自引:1,他引:17       下载免费PDF全文
Y Mizukami  H Ma 《The Plant cell》1997,9(3):393-408
Determinate growth of floral meristems in Arabidopsis requires the function of the floral regulatory gene AGAMOUS (AG). Expression of AG mRNA in the central region of floral meristems relies on the partially overlapping functions of the LEAFY (LFY) and APETALA1 (AP1) genes, which promote initial floral meristem identity. Here, we provide evidence that AG function is required for the final definition of floral meristem identity and that constitutive AG function can promote, independent of LFY and AP1 functions, the determinate floral state in the center of reproductive meristems. Loss-of-function analysis showed that the indeterminate central region of the ag mutant floral meristem undergoes conversion to an inflorescence meristem when long-day-dependent flowering stimulus is removed. Furthermore, gain-of-function analysis demonstrated that ectopic AG function results in precocious flowering and the formation of terminal flowers at apices of both the primary inflorescence and axillary branches of transgenic Arabidopsis plants in which AG expression is under the control of the 35S promoter from cauliflower mosaic virus. Similar phenotypes were also observed in lfy ap1 double mutants carrying a 35S-AG transgene. Together, these results indicate that AG is a principal developmental switch that controls the transition of meristem activity from indeterminate to determinate.  相似文献   

8.
9.
10.
APETALA1 (AP1) and its homologue SQUAMOSA (SQUA) are key regulatory genes specifying floral meristem identity in the model plants Arabidopsis and Antirrhinum. Despite many similarities in their sequence, expression and functions, only AP1 appears to have the additional role of specifying sepal and petal identity. No true AP1/SQUA-functional homologues from any other plant species have been functionally studied in detail, therefore the question of how the different functions of AP1-like genes are conserved between species has not been addressed. We have isolated and characterized PEAM4, the AP1/SQUA-functional homologue from pea, a plant with a different floral morphology and inflorescence architecture to that of Arabidopsis or Antirrhinum. PEAM4 encodes for a polypeptide 76% identical to AP1, but lacks the C-terminal prenylation motif, common to AP1 and SQUA, that has been suggested to control the activity of AP1. Nevertheless, constitutive expression of PEAM4 caused early flowering in tobacco and Arabidopsis. In Arabidopsis, PEAM4 also caused inflorescence-to-flower transformations similar to constitutive AP1 expression, and was able to rescue the floral organ defects of the strong ap1-1 mutant. Our results suggest that the control of both floral meristem and floral organ identity by AP1 is not restricted to Arabidopsis, but is extended to species with diverse floral morphologies, such as pea.  相似文献   

11.
Phylogeny and domain evolution in the APETALA2-like gene family   总被引:5,自引:0,他引:5  
The combined processes of gene duplication, nucleotide substitution, domain duplication, and intron/exon shuffling can generate a complex set of related genes that may differ substantially in their expression patterns and functions. The APETALA2-like (AP2-like) gene family exhibits patterns of both gene and domain duplication, coupled with changes in sequence, exon arrangement, and expression. In angiosperms, these genes perform an array of functions including the establishment of the floral meristem, the specification of floral organ identity, the regulation of floral homeotic gene expression, the regulation of ovule development, and the growth of floral organs. To determine patterns of gene diversification, we conducted a series of broad phylogenetic analyses of AP2-like sequences from green plants. These studies indicate that the AP2 domain was duplicated prior to the divergence of the two major lineages of AP2-like genes, euAP2 and AINTEGUMENTA (ANT). Structural features of the AP2-like genes as well as phylogenetic analyses of nucleotide and amino acid (aa) sequences of the AP2-like gene family support the presence of the two major lineages. The ANT lineage is supported by a 10-aa insertion in the AP2-R1 domain and a 1-aa insertion in the AP2-R2 domain, relative to all other members of the AP2-like family. MicroRNA172-binding sequences, the function of which has been studied in some of the AP2-like genes in Arabidopsis, are restricted to the euAP2 lineage. Within the ANT lineage, the euANT lineage is characterized by four conserved motifs: one in the 10-aa insertion in the AP2-R1 domain (euANT1) and three in the predomain region (euANT2, euANT3, and euANT4). Our expression studies show that the euAP2 homologue from Amborella trichopoda, the putative sister to all other angiosperms, is expressed in all floral organs as well as leaves.  相似文献   

12.
13.
14.
15.
16.
17.
拟南芥LEAFY基因在花发育中的网络调控及其生物学功能   总被引:15,自引:0,他引:15  
王利琳  梁海曼  庞基良  朱睦元 《遗传》2004,26(1):137-142
重点综述了拟南芥花分生组织特征基因——LEAFY(LFY)基因及其同源基因在花发育中的网络调控及其生物学功能。LFY基因广泛表达于高等植物的营养性和生殖性组织。LFY基因需要与其他基因相互作用,並且表达量达到一定水平时才能促进成花。LFY基因处于成花调控网络的关键位置,不仅调控开花时间和花转变,而且在花序和花的发育中也起重要作用。碳源、植物激素等因子直接或间接地影响LFY基因的表达和作用。提示通过掌握LFY基因的表达调控规律进一步探讨成花机理的可行性。 Abstract:Recent research progress on regulation network and biological roles of LFY gene in Arabidopsis thaliana and its homologue genes in floral development are reviewed emphatically in the present paper.LFY gene expresses widely in both vegetative and reproductive tissues in different higher plants,therefore investigation on role of LFY gene on flowering is of general significance.LFY gene plays an important role to promote flower formation by interaction and coordination with other genes,such as TFL,EMF,AP1,AP2,CAL,FWA,FT,AP3,PI,AG,UFO,CO,LD,GA1 etc,and a critical level of LFY expression is essential.LFY gene not only controls flowering-time and floral transition,but also plays an important role in inflorescence and floral organ development.It was situated at the central site in gene network of flowering regulation,positively or negatively regulates the level or activities of flowering-related genes.Some physiological factors,such as carbon sources,phytohormones,affect directly or indirectly the expression and actions of LFY gene.This indicates that level of LFY expression can also be regulated with physiological methods.It is probable that we can explain the principal mechanism of flowering by regulation network of LFY gene.  相似文献   

18.
B-class floral homeotic genes are required for the proper formation and identity of petals and stamens in dicot flowers. A partial cDNA clone encoding a B-class gene, BnAP3 (Brassica napus APETALA3), was isolated from a B. napus cDNA library derived from young inflorescence meristems. The 5' region of the cDNA was retrieved by RACE. The deduced amino acid sequence of the full-length clone exhibited high similarity to APETALA3 of Arabidopsis thaliana and functionally homologous proteins from other species. 5' RACE and Southern analysis suggests that BnAP3 has multiple alleles in B. napus. Expression analysis assayed by RT-PCR shows that BnAP3 is expressed in floral tissues, as well as non-floral tissues such as root and bract. Transformation of wild-type A. thaliana and B. napus plants with BnAP3 under the control of a promoter specific to reproductive organs converts carpels to stamens, while the expression of this construct in A. thaliana plants mutant for AP3 restores the development of third-whorl stamens in addition to directing a carpel to stamen conversion in the fourth whorl.  相似文献   

19.
The ULTRAPETALA gene controls shoot and floral meristem size in Arabidopsis   总被引:3,自引:0,他引:3  
The regulation of proper shoot and floral meristem size during plant development is mediated by a complex interaction of stem cell promoting and restricting factors. The phenotypic effects of mutations in the ULTRAPETALA gene, which is required to control shoot and floral meristem cell accumulation in Arabidopsis thaliana, are described. ultrapetala flowers contain more floral organs and whorls than wild-type plants, phenotypes that correlate with an increase in floral meristem size preceding organ initiation. ultrapetala plants also produce more floral meristems than wild-type plants, correlating with an increase in inflorescence meristem size without visible fasciation. Expression analysis indicates that ULTRAPETALA controls meristem cell accumulation partly by limiting the domain of CLAVATA1 expression. Genetic studies show that ULTRAPETALA acts independently of ERA1, but has overlapping functions with PERIANTHIA and the CLAVATA signal transduction pathway in controlling shoot and floral meristem size and meristem determinacy. Thus ULTRAPETALA defines a novel locus that restricts meristem cell accumulation in Arabidopsis shoot and floral meristems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号