首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Turnover, in the light, of apoproteins of light-harvesting chlorophylla/6-proteins for Photo-system I and II (LHC-I and LHC-II, respectively)was studied with the wild-type and three chlorophyll 6-deficientmutants of rice. (1) Synthesis of the 24 and 25 kDa apoproteinsof LHC-II and the 20 and 21 kDa apoproteins of LHC-I was examinedby incubating leaf segments with [35S]-methionine. The threerice mutants, chlorina 2, which totally lacks chlorophyll b,and chlorina 11 and 14, which are partially deficient in chlorophyllb, synthesized the apoproteins as rapidly as did the wild typerice. (2) Pulse-chase experiments showed that breakdown of theapoproteins proceeded slowly, such that only a small proportionof the newly synthesized apoproteins was lost during the 48h of the chase in normal rice leaves. By contrast, large fractionsof the labelled apoproteins were rapidly degraded within thefirst several hours of the chase period in the chlorina mutants.The greater the deficiency in chlorophyll b of the mutant, thelarger were the rate and extent of the protein breakdown. Thisresult indicates that chlorophyll b is needed to stabilize theapoproteins of LHC-II and LHC-I. (3) However, even in chlorina2, there were small fractions of the apoproteins with lifetimesas long as those of apoproteins in the wild-type rice, suggestingthat the newly synthesized apoproteins are partially protectedby a factor(s) other than chlorophyll b. (4) The rate of turnoverof the apoproteins was significantly reduced in the dark andstrongly inhibited by prior treatment of leaf segments withchloramphenicol. (Received November 24, 1988; Accepted March 17, 1989)  相似文献   

2.
Chlorophyll-protein complexes of the wild type and 16 strainsof chlorina mutants of rice were investigated by gel electrophoresis.An antenna chlorophyll a/b-protein of photosystem II (LHC-II)was present in reduced amounts in Type II chlorina mutants whichhave the chlorophyll a/b ratios of 10–15, and was totallyabsent from Type I chlorina mutants which lack chlorophyll b.Another antenna chlorophyll-protein of photosystem I (LHC-I)containing two polypeptides of 20 and 21 kDa was also presentin the Type II mutants but not in the Type I mutants. The polypeptideprofiles of the thylakoid membranes indicate that Type I mutantslack both the 20 and 21 kDa polypeptides, whereas the abundanceof the two polypeptides relative to the CPI apoprotein in theType II mutants is comparable with that in the wild type. Itis concluded that the 20 and 21 kDa polypeptides are both relatedto LHC-I and are normally synthesized and accumulated in theType II mutants. (Received June 6, 1985; Accepted August 6, 1985)  相似文献   

3.
Stoichiometries of photosystem I (PSI) and photosystem II (PSII)reaction centers in a cultivar of rice, Norin No. 8, and threechlorophyll b-deficient mutants derived from the cultivar wereinvestigated. Quantitation of PSI by photooxidation of P-700and chromatographic assay of vitamin K1 showed that, on thebasis of chlorophyll, the mutants have higher concentrationsof PSI than the wildtype rice. Greater increases were observedin the PSII contents measured by photoreduction of QA, bindingof a radioactive herbicide and atomic absorption spectroscopyof Mn. Consequently, the PSII to PSI ratio increased from 1.1–1.3in the wild-type rice to 1.8 in chlorina 2, which contains noChl b, and to 2.0–3.3 in chlorina 11 and chlorina 14,which have chlorophyll a/b ratios of 9 and 13, respectively.Measurement of oxygen evolution with saturating single-turnoverflashes revealed that, whereas at most 20% of PSII centers areinactive in oxygen evolution in the wildtype rice, the non-functionalPSII centers amount to about 50% in the three mutant strains.The fluorescence induction kinetics was also analyzed to estimateproportions of the inactive PSII in the mutants. The data obtainedsuggest that plants have an ability to adjust the stoichiometryof the two photosystems and the functional organization of PSIIin response to the genetically induced deficiency of chlorophyllb. (Received July 29, 1994; Accepted February 7, 1996)  相似文献   

4.
Apoproteins of spinach and pea light-harvesting chlorophylla/b complexes associated with photosystem I (LHCI) were identifiedby their chlorophyll fluorescence spectra and protein sequences.Spinach LHCI holocomplex consisted of four apoproteins of 25kDa, 23 kDa, 21 kDa and 20.5 kDa. LHCI subcomplex isolated bysucrose density gradient centrifugation fluoresced at 680 nmwith a shoulder around 700–710 nm at 77 K. It containedthe 23 kDa protein of which the N-terminal sequence correspondedto Type II gene of LHCI. Another LHCI subcomplex isolated bygel electrophoresis emitted at 679 nm and contained the 25 kDaprotein, of which the N-terminus was blocked. Its internal sequenceswere determined after protease treatment and found to be homologousto Type III gene of LHCI. An oligomeric subcomplex of LHCI isolatedby gel electrophoresis emitted at 726 nm and consisted of the21 kDa and 20.5 kDa apoproteins. N-terminal sequence of the20.5 kDa component corresponded to the Type I gene of LHCI.The 21 kDa component did not have any clear homologue, but itsN-terminal sequence was weakly but significantly homologousto all LHC components particularly to Type I LHCI among others.It was, thus, concluded that the 21 kDa protein is the fourthtype of LHCI apoprotein. Similar sequence homology was foundfor pea LHCI apoproteins. (Received September 10, 1990; Accepted November 22, 1990)  相似文献   

5.
Absorption spectra and their fourth derivatives of chloroplastsisolated from 16 different rice chlorina mutants were determinedat liquid nitrogen temperature. The results suggest that Chlb is absent from 10 mutants labelled chlorina-1 to -10, while6 mutants named chlorina-11 to -16 contain low levels of Chlb. Low temperature fluorescence emission spectra indicate thata light-harvesting Chl a/b protein of photosystem I is presentin chlorina-11 to -16 but not in chlorina-1 to -10. Reinvestigationof Chl a/b ratios by a sensitive fluorescence method shows thatthe 16 mutants are divided into three groups different in thedegree of Chl b-deficiency; chlorina-1 to -10 totally lack Chlb (Type I), chlorina-11 to -13 have Chl a/b ratio of about 10(Type II-A) and chlorina-14 to -16 have the ratio of about 15(Type II-B). (Received June 6, 1985; Accepted August 6, 1985)  相似文献   

6.
A collection of 17 monoclonal antibodies elicited against the light-harvesting chlorophyll a/b protein complex which serves photosystem II (LHC-II) of Pisum sativum shows six classes of binding specificity. Antibodies of two of the classes recognize a single polypeptide (the 28- or the 26- kD polypeptides), thereby suggesting that the two proteins are not derived from a common precursor. Other classes of antibodies cross-react with several polypeptides of LHC-II or with polypeptides of both LHC-II and the light-harvesting chlorophyll a/b polypeptides of photosystem I (LHC-I), indicating that there are structural similarities among the polypeptides of LHC-II and LHC-I. The evidence for protein processing by which the 26-, 25.5-, and 24.5-kD polypeptides are derived from a common precursor polypeptide is discussed. Binding studies using antibodies specific for individual LHC-II polypeptides were used to quantify the number of antigenic polypeptides in the thylakoid membrane. 27 copies of the 26-kD polypeptide and two copies of the 28-kD polypeptide were found per 400 chlorophylls. In the chlorina f2 mutant of barley, and in intermittent light-treated barley seedlings, the amount of the 26-kD polypeptide in the thylakoid membranes was greatly reduced, while the amount of 28-kD polypeptide was apparently not affected. We propose that stable insertion and assembly of the 28-kD polypeptide, unlike the 26-kD polypeptide, is not regulated by the presence of chlorophyll b.  相似文献   

7.
Light-harvesting capacities of photosystem I (PSI) and photosystemII (PSII) in a wild-type and three chlorophyll b-deficient mutantstrains of rice were determined by measuring the initial slopeof light-response curve of PSI and PSII electron transport andkinetics of light-induced redox changes of P-700 and QA, respectively.The light-harvesting capacity of PSI determined by the two methodswas only moderately reduced by chlorophyll b-deficiency. Analysisof the fluorescence induction that monitors time course of QAphotoreduction showed that both relative abundance and antennasize of PSIIa decrease with increasing deficiency of chlorophyllb and there is only PSII in chlorina 2 which totallylacks chlorophyll b. The numbers of antenna chlorophyll moleculesassociated with the mutant PSII centers were, therefore, threeto five times smaller than that of PSIIa in the wild type rice.Rates of PSII electron transport determined on the basis ofPSII centers in the three mutants were 60–70% of thatin the normal plant at all photon flux densities examined, indicatingthat substantial portions of the mutant PSII centers are inactivein electron transport. The initial slopes of light-responsecurves of PSII electron transport revealed that the functionalantenna sizes of the active populations of PSII centers in themutants correspond to about half that of PSII in the wild typerice. Thus, the numbers of chlorophyll molecules that serveas antenna of the oxygen-evolving PSII centers in the mutantsare significantly larger than those that are actually associatedwith each PSII center. It is proposed that the inactive PSIIserves as an antenna of the active PSII in the three chlorophyllb-deficient mutants of rice. In spite of the reduced antennasize of PSII, therefore, the total light-harvesting capacityof PSII approximately matches that of PSI in the mutants. (Received July 29, 1994; Accepted February 7, 1996)  相似文献   

8.
Photosynthetic oxygen evolution, chlorophyll contents and chlorophylla /b ratios of 3rd to 6th leaves of rice seedlings were measuredto examine whether or not inactivation of photosynthesis duringsenescence is related to loss of chlorophyll. Photosyntheticactivity decreased more rapidly than chlorophyll content duringleaf senescence; as a result, the lower the leaf position, thelower was the rate of oxygen evolution determined on the basisof chlorophyll. Chlorophyll ab ratio also decreased with advancingsenescence. Electrophoretic analysis revealed that the declinein chlorophyll ab ratio is due to more rapid degradation ofthe reaction center complexes than light-harvesting chlorophyllab proteins of photosystem II and that the photosystem I reactioncenter disappears in parallel with the inactivation of photosynthesis.A simple method was developed to estimate the amounts of chlorophylla associated with the reaction center complexes of the two photosystemsfrom the total chlorophyll contents and chlorophyll ab ratiosof leaves. Rates of oxygen evolution, determined on the basisof chlorophyll a bound to the reaction center complexes, remainedconstant throughout the course of senescence. Thus, inactivationof photosynthesis is closely related with loss of the reactioncenter complexes during leaf senescence of rice seedlings. Theresults suggest that loss of photosynthesis is mainly causedby loss of a functional unit of photosynthesis or by a decreasein the number of whole chloroplasts. (Received April 22, 1987; Accepted August 13, 1987)  相似文献   

9.
The light-harvesting chlorophyll a/b-protein complex of photosystem II (LHCII) is the most abundant membrane protein in green plants, and its degradation is a crucial process for the acclimation to high light conditions and for the recovery of nitrogen (N) and carbon (C) during senescence. However, the molecular mechanism of LHCII degradation is largely unknown. Here, we report that chlorophyll b reductase, which catalyzes the first step of chlorophyll b degradation, plays a central role in LHCII degradation. When the genes for chlorophyll b reductases NOL and NYC1 were disrupted in Arabidopsis thaliana, chlorophyll b and LHCII were not degraded during senescence, whereas other pigment complexes completely disappeared. When purified trimeric LHCII was incubated with recombinant chlorophyll b reductase (NOL), expressed in Escherichia coli, the chlorophyll b in LHCII was converted to 7-hydroxymethyl chlorophyll a. Accompanying this conversion, chlorophylls were released from LHCII apoproteins until all the chlorophyll molecules in LHCII dissociated from the complexes. Chlorophyll-depleted LHCII apoproteins did not dissociate into monomeric forms but remained in the trimeric form. Based on these results, we propose the novel hypothesis that chlorophyll b reductase catalyzes the initial step of LHCII degradation, and that trimeric LHCII is a substrate of LHCII degradation.  相似文献   

10.
Oxygen-evolving photosystem II complexes from spinach, whichlack light-harvesting chlorophyll a/b proteins, were treatedwith a bifunctional crosslinking reagent, hexamethylene-diisocyanate.Identification of crosslinked proteins with antisera raisedagainst various constituent proteins of the oxygen-evolvingPS II complex showed that the extrinsic 33 kDa protein is locatedless than 11 Å from the 9.4 kDa subunit of cytochromeb 559 and the 4.8 kDa product of psb I gene. (Received October 14, 1991; Accepted February 6, 1992)  相似文献   

11.
In the oxygen-evolving photosystem-II (PSII) of higher plantchioroplasts and green algae, most of the light-harvesting functionis performed by the chlorophyll (Chl) a-b-protein complex (LHC-II).On the average, the LHC-II contains about 210 Chl (a+b) moleculesper PSII reaction center. The polypeptide composition, copynumber and organization of assembly in the LHC-II complex arenot fully understood at present. This work utilized the chlorinaf2 mutant of barley (lacking Chl b and having a LHC-II antennaof only 13 Chl a molecules) to determine the organization andstability of assembly of proteins in the LHC-II. High-resolutionSDS-PAGE and immunoblot analysis showed the presence of fourmain constitutive polypeptides in the wild-type LHC-II (termedhere subunits a, b, c and d) with molecular masses in the range30–25 kDa. Of those, only subunit d (a 25 kDa polypeptide)was found to occur at an equal copy number per PSII reactioncenter in both wild-type and in the Chl b-less chlorina f2 mutant.All other subunits were either absent or existed in much loweramounts in the mutant. Subunit d is a polypeptide constituentof the major Chl-protein subcomplex (CPII) of the LHC-II. Itis stably incorporated in the thylakoid membrane in the absenceof Chl b and probably binds the 13 Chl a molecules in the residualLHC-II antenna of the chlorina f2 mutant. We propose that, ofall LHC-II polypeptides, subunit d is most proximal to the PSIIcore and may serve as a linker in the process of excitationenergy transfer from the bulk LHC-II to the PSII reaction centerin chloroplasts. (Received February 25, 1992; Accepted May 12, 1992)  相似文献   

12.
Mutants of sweetclover (Melilotus alba) with defects in the nuclear ch5 locus were examined. Using thin-layer chromatography and absorption spectroscopy, three of these mutants were found to lack chlorophyll (Chl) b. One of these three mutants, U374, possessed thylakoid membranes lacking the three Chl b-containing pigment-protein complexes (AB-1, AB-2, and AB-3) while still containing A-1 and A-2, Chl a complexes derived from photosystems I and II, respectively. Complete solubilization and denaturation of the thylakoid proteins from this mutant revealed very little apoprotein from the Chl b-containing light-harvesting complexes, the major thylakoid proteins in normal plants. The normal and mutant sweetclover plants had active thylakoid protein kinase activities and numerous polypeptides were labeled following incubation with [γ-32P]ATP. With the U374 mutant, however, there was very little detectable label co-migrating with the light-harvesting complex apoproteins on polyacrylamide gels. The Chl b-deficient chlorina-f2 mutant of barley (Hordeum vulgare) also had an active protein kinase activity capable of phosphorylating numerous polypeptides, including ones migrating with the same mobility as the light-harvesting complex apoproteins. These results indicate that the sweetclover mutants may be useful systems for studies on the function and organization of Chl b in thylakoid membranes of higher plants.  相似文献   

13.
A chlorophyll a/b protein complex has been isolated from a resolved native photosystem I complex by mildly dissociating sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The chlorophyll a/b protein contains a single polypeptide of molecular weight 20 kilodaltons, and has a chlorophyll a/b ratio of 3.5 to 4.0. The visible absorbance spectrum of the chlorophyll a/b protein complex showed a maximum at 667 nanometers in the red region and a 77 K fluorescence emission maximum at 681 nanometers. Alternatively, by treatment of the native photosystem I complex with lithium dodecyl sulfate and Triton, the chlorophyll a/b protein complex could be isolated by chromatography on Sephadex G-75. Immunological assays using antibodies to the P700-chlorophyll a-protein and the photosystem II light-harvesting chlorophyll a/b protein show no cross-reaction between the photosystem I chlorophyll a/b protein and the other two chlorophyll-containing protein complexes.  相似文献   

14.
Regulatory effects of light on senescence of rice leaves wereinvestigated by measuring degradation of chlorophyll and proteinsin leaf segments which had been kept in the dark or under illuminationwith light of different intensities and colors. When leaveshad been left in total darkness for three days at 30°C,there was an initial long lag that lasted for one whole dayand then chlorophyll was rapidly degraded in the second andthird days. Breakdown of chlorophyll was strongly retarded bycontinuous illumination with white light of intensity as lowas 0.5 µmol photons m–2 s–1 but the effectof light decreased at intensities above 10 µmol photonsm–2 s–2. The initial lag and subsequent degradationof chlorophyll in the dark were little affected by illuminationwith red or far red light at the beginning of dark treatment.However, a brief illumination with red light at the end of thefirst and/or second day significantly suppressed degradationof chlorophyll during subsequent dark periods and the effectof red light was nullified by a short irradiation with far redlight. Thus, degradation of chlorophyll is regulated by phytochrome.Thylakoid membrane proteins and soluble proteins were also largelydegraded during three days in the dark. Degradation of membraneproteins such as the apoproteins of light-harvesting chlorophylla/b proteins of photosystem II and chlorophyll a-binding proteinsof reaction center complexes showed a long lag and was stronglysuppressed by illumination with weak white light. Thus, theloss of chlorophyll can be correlated with degradation of chlorophyll-carryingmembrane proteins. By contrast, light had only a weak protectingeffect on soluble proteins and ribulose-1,5-bisphosphate carboxylase/oxygenaserapidly disappeared under illumination with weak white light.Thus, breakdown of thylakoid membrane and soluble proteins aredifferently regulated by light. Artifacts which would be introducedby detachment of leaves were also discussed. 1 Present address: Department of Applied Biology, Faculty ofScience and Technology, Science University of Tokyo, Yamazaki,Noda-shi, Chiba, 278 Japan. 2 Present address: Department of Life Science, Faculty of Science,Himeji Institute of Technology, Harima Science Park City, Hyogo,678-12 Japan.  相似文献   

15.
The effects were examined of 5-aminolevulinic acid (ALA) onthe accumulation of Chl and apoproteins of light-harvestingChl a/b-protein complex of photosystem II (LHCII) in cucumbercotyledons under intermittent light. A supply of ALA preferentiallyincreased the accumulation of Chl a during intermittent illumination.However, when cotyledons were pretreated with a brief exposureto light or benzyladenine (BA), the stimulatory effect of ALAon the increase in the level of Chl b was greater than thatin the level of Chl a, resulting in decreased ratios of Chla/b. Time-course experiments with preilluminated cotyledonsrevealed that LHCII apoproteins accumulated rapidly within thefirst 30 min of intermittent illumination with a decline duringsubsequent incubation in darkness. A supply of ALA did not affectthe accumulation of LHCII apoproteins during the intermittentlight period, but it efficiently inhibited the decline in theirlevels during the subsequent darkness. After exposure to a singlepulse of light of BA-treated cotyledons, the prompt increasein levels of LHCII apoproteins was not accompanied by the formationof Ch b, which began to accumulate later. The pattern of changesin levels of LHCII apoproteins was quite similar to that inlevels of Chl a. These results suggest that LHCII apoproteinsare first stabilized by binding with Chl a and that an increasedsupply of Chl a and the accumulation of LHCII apoproteins areprerequisites for the formation of Chl b. 1Present address: Department of Chemistry, Faculty of Scienceand Technology, Meijo University, Aichi, 468 Japan.  相似文献   

16.
Ohtsuka T  Ito H  Tanaka A 《Plant physiology》1997,113(1):137-147
The photosynthetic apparatus is reorganized during acclimation to various light environments. During adaptation of plants grown under a low-light to high-light environment, the light-harvesting chlorophyll a/b-protein complexes decompose concomitantly with an increase in the core complex of photosystem II. To study the mechanisms for reorganization of photosystems, the assembly of chlorophyll with apoproteins was investigated using isolated chloroplasts. When [14C]chlorophyllide b was incubated with chloroplasts in the presence of phytyl pyrophosphate, it was esterified and some of the [14C]chlorophyll b was converted to [14C]chlorophyll a via 7-hydroxymethyl chlorophyll. [14C]Chlorophyll a and b were incorporated into chlorophyll-protein complexes. Light-harvesting chlorophyll a/b-protein complexes of PSII had a lower [14C]chlorophyll a to [14C]chlorophyll b ratio than P700-chlorophyll a-protein complexes, indicating the specific binding of chlorophyll to apoproteins in our systems. 7-Hydroxymethyl chlorophyll, an intermediate molecule from chlorophyll b to chlorophyll a, did not become assembled with any apoproteins. These results indicate that chlorophyll b is released from light-harvesting chlorophyll a/b-protein complexes of photosystem II and converted to chlorophyll a via 7-hydroxymethyl chlorophyll in the lipid bilayer and is then used for the formation of core complexes of photosystems. These mechanisms provide the fast, fine regulation of the photosynthetic apparatus during construction of photosystems.  相似文献   

17.
The formation of Chl-protein complexes (CPs) in cucumber cotyledonsduring a dark period after a brief illumination was studied.SDS-PAGE analysis showed that the P700-Chl a-protein complex(CP1) and Chl a-protein complex of the PS II core (CPa) increased,with a concomitant decrease in the light-harvesting Chl a/6-proteincomplex of PS II (LHCII), during 24-h dark incubation of cotyledonsafter 6h of continuous illumination. In agreement with theseresults, curve analysis revealed that spectral components characteristicof CP1 and CPa increased while those of Chi b decreased duringthe dark incubation. Since Chl is not synthesized in the dark,Chl must be released from LHCII and re-incorporated into CP1and CPa. The amounts of apoproteins of CP1 and 43 kDa protein(one of the apoproteins of CPa) increased during the dark incubation,and the increase could be inhibited by chloramphenicol (CAP).CP1 did not increase in the dark when tissues were incubatedwith CAP which inhibited the synthesis of apoproteins of CP1,indicating that CP formation by Chl redistribution needs newlysynthesized apoproteins. The decrease in LHCII apoproteins duringdark incubation was inhibited by CAP probably because Chl wasnot removed from LHCII by apoproteins of CP1 and CPa, whosesynthesis was blocked by the presence of CAP. When intermittently-illuminatedcotyledons containing a little LHCII were incubated with CaCl2in the dark, Chl b and LHCII apoproteins accumulated with thedisappearance of 43 kDa protein; Chl of 43 kDa protein may beutilized for LHCII formation. We concluded that Chl moleculesonce bound with their apoproteins are redistributed among theapoproteins. (Received October 17, 1990; Accepted December 6, 1990)  相似文献   

18.
Light-harvesting chlorophyll a/b-proteins of photosystem II(LHC II) were purified from thylakoid membranes of the greenalga, Bryopsis maxima. Extraction with digitonin did not solubilizechlorophylls (Chl) and carotenoids to any significant extent.Two forms of purified LHC II, P4 and P5, with respective apparentparticle sizes of 280 and 295 kDa, were obtained by sucrosedensity gradient centrifugation and column chromatography onDEAE-Toyopearl. P4 and P5 had similar spectral absorption at77 K with Chl a maxima at 674, 658 and 438 nm and Chl b maximaat 649 and 476 nm. Carotene was not present in P4 or P5. Fluorescenceexcitation spectra demonstrated that Chl b, siphonaxanthin andsiphonein can efficiently transfer absorbed light energy toChl a. P4 and P5 each contained two apoproteins of 28 and 32kDa, with similar but not identical amino acid compositions.P5 contained 6 molecules of Chl a, 8 of Chl b and 5 of xanthophyll(three molecules of siphonaxanthin and one each of siphoneinand neoxanthin) per polypeptide. (Received September 11, 1989; Accepted December 11, 1989)  相似文献   

19.
The chlorina-f2 mutant of barley (Hordeum vulgare L.) contains no chlorophyll b in its light-harvesting antenna, whereas the chlorina-103 mutant contains approximately 10% of the chlorophyll b found in wild-type. The absolute chlorophyll antenna size for Photosystem-II in wild-type, chlorina-103 and chlorina-f2 mutant was 250, 58 and 50 chlorophyll molecules, respectively. The absolute chlorophyll antenna size for Photosystem-I in wild-type, chlorina-103 and chlorina-f2 mutant was 210, 137 and 150 chlorophyll molecules, respoectively. In spite of the smaller PS I antenna size in the chlorina mutants, immunochemical analysis showed the presence of polypeptide components of the LHC-I auxiliary antenna with molecular masses of 25, 19.5 and 19 kDa. The chlorophyll a-b-binding LHC-II auxiliary antenna of PS II contained five polypeptide subunits in wild-type barley, termed a, b, c, d and e, with molecular masses of 30, 28, 27, 24 and 21 kDa, respectively. The polypeptide composition of the LHC-II auxiliary antenna of PS II was found to be identical in the two mutants, with only the 24 kDa subunit d present at an equal copy number per PS II in each of the mutants and in the wild-type barley. This d subunit assembles stably in the thylakoid membrane even in the absence of chlorophyll b and exhibits flexibility in its complement of bound chlorophylls. We suggest that polypeptide subunit d binds most of the chlorophyll associated with the residual PS II antenna in the chlorina mutants and that is proximal to the PS II-core complex.Abbreviations CP chlorophyll-protein - LHC the chlorophyll a-b binding light-harvesting complex - LHC-II subunit a the Lhcb4/5 gene product - subunit b the Lhcb1 gene product - subunit c Lhcb2 the gene product - subunit d the Lhcb3 gene product - subunit e the Lhcb6 gene product - PMSF phenylmethane sulphonyl fluoride - RC reaction center - QA the primary quinone electron acceptor of Photosystem-II - P700 the reaction center of PS I  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号