首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence that membrane surface tension regulates water fluxes in intact cells of a Saccharomyces cerevisiae strain overexpressing aquaporin AQY1 was obtained by assessing the osmotic water transport parameters in cells equilibrated in different osmolarities. The osmotic water permeability coefficients (Pf) obtained for yeast cells overexpressing AQY1 incubated in low osmolarity buffers were similar to those obtained for a double mutant aqy1aqy2 and approximately three times lower (with higher activation energy, Ea) than values obtained for cells incubated in higher osmolarities (with lower Ea). Moreover, the initial inner volumes attained a maximum value for cells equilibrated in lower osmolarities (below 0.75 M) suggesting a pre-swollen state with the membrane under tension, independent of aquaporin expression. In this situation, the impairment of water channel activity suggested by lower Pf and higher Ea could probably be the first available volume regulatory tool that, in cooperation with other osmosensitive solute transporters, aims to maintain cell volume. The results presented point to the regulation of yeast water channels by membrane tension, as previously described in other cell systems.  相似文献   

2.
The response of yeast cells to osmotic pressure variations of the medium were studied through the kinetics of cell-volume modifications corresponding to the mass transfer of water and solutes. Osmotic variations were made by modification of the concentration of an external binary solution (polyol/water) without nutritive components. Two phases were distinguished in the thermodynamic response. A transient phase following an osmotic shift, which is characterised by rapid water transfer across the cell membrane and whose kinetics determine cell viability; then, a steady-state phase is reached when the cell volume becomes quasi-constant. The response of the cell during the transient phase depends on the level of the osmotic stress, and hence of the osmotic pressure of the medium. In the range of weak osmotic pressures, the metabolism of the cell is preserved through the maintenance of the intracellular turgor pressure. On the other hand in the range of high osmotic pressures of the medium, yeast cells behave as osmometers and no further metabolism occurs.  相似文献   

3.
During their lifetime, most organisms experience osmotic stress, mostly due to fluctuating external osmolarities, but also as a result of desiccation or freezing. Under these conditions, the ratio of osmolytes to water and macromolecules in the cells is significantly altered. To survive, cells must continuously sense these alterations and adapt accordingly. Osmolarity is a physico-chemical parameter that causes pleiotropic alterations in cell physiology. Recent research has revealed various mechanisms to sense high external osmolarity, based on monitoring cellular changes that are associated with the altered environment.  相似文献   

4.
This paper reviews the passive mechanisms involved in the response of a yeast to changes in medium concentration and osmotic pressure. The results presented here were collected in our laboratory during the last decade and are experimentally based on the measurement of cell volume variations in response to changes in the medium composition. In the presence of isoosmotic concentration gradients of solutes between intracellular and extracellular media, mass transfers were found to be governed by the diffusion rate of the solutes through the cell membrane and were achieved within a few seconds. In the presence of osmotic gradients, mass transfers mainly consisting in a water flow were found to be rate limited by the mixing systems used to generate a change in the medium osmotic pressure. The use of ultra-rapid mixing systems allowed us to show that yeast cells respond to osmotic upshifts within a few milliseconds and to determine a very high hydraulic permeability for yeast membrane (Lp>6.10(-11) m x sec)-1) x Pa(-1)). This value suggested that yeast membrane may contain facilitators for water transfers between intra and extracellular media, i.e. aquaporins. Cell volume variation in response to osmotic gradients was only observed for osmotic gradients that exceeded the cell turgor pressure and the maximum cell volume decrease, observed during an hyperosmotic stress, corresponded to 60% of the initial yeast volume. These results showed that yeast membrane is highly permeable to water and that an important fraction of the intracellular content was rapidly transferred between intracellular and extracellular media in order to restore water balance after hyperosmotic stresses. Mechanisms implied in cell death resulting from these stresses are then discussed.  相似文献   

5.
Choline, glycine betaine, and L-proline enhanced the growth of Staphylococcus aureus at high osmolarity (i.e., they acted as osmoprotectants) on various liquid and solid defined media, while an osmoprotective effect of taurine was shown only for cells growing on high-NaCl solid medium that lacked other osmoprotectants. Potassium pool levels were high, and there was little difference in levels in cells grown at different osmolarities. Glycine betaine accumulated to high levels in osmotically stressed cells, and choline was converted to glycine betaine. Proline and taurine also accumulated in response to osmotic stress but to lower levels than glycine betaine.  相似文献   

6.
The osmotic response of human erythrocytes and the membrane cytoskeleton   总被引:2,自引:0,他引:2  
The volumes of human erythrocytes suspended in solutions of varying concentrations of sodium chloride and sucrose were measured by a Coulter Channelyzer Model H4 with appropriate corrections. The cells showed greatly restricted volume changes at osmolarities between 200-700 mOsm. At osmolarities outside this limit, on the other hand, the cells showed nonrestricted volume changes following essentially the predictions of an ideal osmometer. This unexpected volume response was not spuriously due to changes in shape or to a changing orientation of the cells as they traversed the aperture. The restricted volume change observed was abolished when the cells had previously been treated with diamide or had been heated for 60 minutes at 50 degrees C, conditions that are known to disturb the spectrin-actin network. The possibility must be considered that the osmotic behavior of human erythrocytes may be nonideal and that this nonideal behavior is primarily due to mechanical restriction provided by the spectrin-actin network of the membrane cytoskeleton.  相似文献   

7.
In the D22 medium of ECHALIER and OHANESSIAN for the culture of Drosophila cell lines lactalbumin hydrolysate could be replaced by a synthetic amino acids mixture. In spite of the presence of yeast extract and fetal calf serum the omission of any one of arginine, asparagine, cysteine, histidine, methionine, proline, serine, or threonine prevented cell proliferation. Of these eight amino acids cysteine had to be added in concentrations higher than 0.1 mM. Without much effect on cell proliferation foetal calf serum could be reduced from 10% to 2% or be replaced by 1% horse serum or 1% porcine serum. Cells could grow in media of osmolarities from 225 mOsm up to 400 mOsm depending on the osmotic agent used. Chloride concentrations up to 80 mM were compatible with proliferation as was a wide range of sodium/potassium ratios.  相似文献   

8.
Enteric bacteria have evolved an impressive array of mechanisms that allow the cell to grow at widely different external osmotic pressures. These serve two linked functions; firstly, they allow the cell to maintain a relatively constant turgor pressure which is essential for cell growth; and secondly they permit changes in cytoplasmic composition such that the accumulation of intracellular osmolytes required to restore turgor pressure does not impair enzyme function. The primary event in turgor regulation is the controlled accumulation of potassium and its counterion glutamate. At high external osmolarities the cytoplasmic levels of potassium glutamate can impair enzyme function. Rapid growth is therefore dependent upon secondary responses, principally the accumulation of compatible solutes, betaine (N-trimethylglycine), proline and trehalose. The accumulation of these solutes is achieved by the controlled activity of transport systems and enzymes in response to changes in external osmotic pressure. It has been proposed that the accumulation of potassium glutamate during turgor regulation acts as a signal for the activation of these systems [1,2]. This brief review will examine the evidence that control over the balance of cytoplasmic osmolytes is achieved by sensing of the intracellular potassium (and glutamate) concentration.  相似文献   

9.
Abstract Enteric bacteria have evolved an impressive array of mechanisms that allow the cell to grow at widely different external osmotic pressures. These serve two linked functions; firstly, they allow the cell to maintain in relatively constant turgor pressure which is essential for cell growth; and secondly they permit changes in cytoplasmic composition such that the accumulation of intracellular osmolytes required to restore turgor pressure does not impair enzyme function. The primary event in turgor regulation is the controlled accumulation of potassium and its counterion glutamate. At high external osmolarities the cytoplasmic levels of potassium glutamate can impair enzyme function. Rapid growth is therefore dependent upon secondary responses, principally the accumulation of compatible solutes, betaine ( N -trimethylglycine), proline and trehalose. The accumulation of these solutes is achieved by the controlled activity of transport systems and enzymes in response to changes in external osmotic pressure. It has been proposed that the accumulation of potassium glutamate during turgor regulation acts as a signal for the activation of these systems [1,2]. This brief review will examine the evidence that control over the balance of cytoplasmic osmolytes is achieved by sensing of the intracellular potassium (and glutamate) concentration.  相似文献   

10.

Background

Yeast cells live in a highly fluctuating environment with respect to temperature, nutrients, and especially osmolarity. The Hog1 mitogen-activated protein kinase (MAPK) pathway is crucial for the adaption of yeast cells to external osmotic changes.

Methodology/Principal Findings

To better understand the osmo-adaption mechanism in the budding yeast Saccharomyces cerevisiae, we have developed a mathematical model and quantitatively investigated the Hog1 response to osmotic stress. The model agrees well with various experimental data for the Hog1 response to different types of osmotic changes. Kinetic analyses of the model indicate that budding yeast cells have evolved to protect themselves economically: while they show almost no response to fast pulse-like changes of osmolarity, they respond periodically and are well-adapted to osmotic changes with a certain frequency. To quantify the signal transduction efficiency of the osmo-adaption network, we introduced a measure of the signal response gain, which is defined as the ratio of output change integral to input (signal) change integral. Model simulations indicate that the Hog1 response gain shows bell-shaped response curves with respect to the duration of a single osmotic pulse and to the frequency of periodic square osmotic pulses, while for up-staircase (ramp) osmotic changes, the gain depends on the slope.

Conclusions/Significance

The model analyses suggest that budding yeast cells have selectively evolved to be optimized to some specific types of osmotic changes. In addition, our work implies that the signaling output can be dynamically controlled by fine-tuning the signal input profiles.  相似文献   

11.
Red blood cell (RBC) swelling and membrane hole formation in hypotonic external media were studied by measuring the time-dependent capacitance, C, and the conductance, G, in the beginning of the beta-dispersion range. At high and moderate osmolarities of the external solution the capacitance reaches a steady-state whereas at low osmolarities it reveals a biphasic kinetics. Examination of RBC suspensions exposed to different concentrations of HgCl(2) demonstrates that water transport through mercury-sensitive water channel controls RBC swelling. Unlike the capacitance, an increase in the conductance to a stationary level is observed after a certain delay. A comparison of G(t) curves recorded for the suspensions of the intact cells and those treated with cytochalasin B or glutaraldehyde demonstrates the significant effect of the membrane viscoelasticity on the pore formation. It is shown that the stretched membrane of completely swollen RBC retains its integrity for a certain time, termed as the membrane lifetime, t(memb). Therefore, the resistivity of RBCs to a certain osmotic shock may be quantified by the distribution function of RBC(t(memb)).  相似文献   

12.
When spinach thylakoid membranes were frozen in vitro in solutions containing constant molar ratios of cryotoxic to cryoprotective solute, maintenance of functional integrity strongly depended on initial osmolarities. Optimum cryopreservation of cyclic photophosphorylation was observed when the membranes were suspended in solutions of intermediate osmolarities (approx. 50–100 mM NaCl, 75–150 mM sucrose). Both higher and lower initial osmolarities were found to result in decreased cryopreservation. In the absence of added salt, more than 100 mM sucrose were needed for full cryopreservation of the membranes. When thylakoids were frozen in solutions containing low concentrations of NaCl (2 mM), the ratio of sucrose to salt necessary to give full protection was high (up to 50). When the salt concentration was about 60 mM, ratios as low as 1.5 were sufficient for maintaining membrane integrity. This ratio increased again, as the initial NaCl concentration was increased beyond 60 mM. During freezing, proteins dissociated from the membranes, and the amount of the released proteins was correlated linearly with inactivation of photophosphorylation. The gel electrophoretic pattern of proteins released at low initial osmolarities differed from that of proteins released at high initial osmolarities. Cryopreservation was also found to depend on membrane concentration. Concentrated membrane suspensions suffered less inactivation than dilute suspensions. The protective effect of high membrane concentrations was particularly pronounced at high initial solute concentrations. It is proposed that damage at low initial osmolarities is caused predominantly by mechanical stress and by osmotic contraction/expansion. Damage at high initial osmolarities is thought to be caused mainly by solute effects. Under these conditions, both the final volume of the unfrozen solution in coexistence with ice and the membrane concentration affect membrane survival by influencing the extent of the loss of membrane components through dissociation reactions. Membrane protection by sugars is caused by colligative action under these circumstances.  相似文献   

13.
The Arabidopsis thaliana ARAKIN (ATMEKK1) gene shows strong homology to members of the (MAP) mitogen-activated protein kinase family, and was previously shown to functionally complement a mating defect in Saccharomyces cerevisiae at the level of the MEKK kinase ste11. The yeast STE11 is an integral component of two MAP kinase cascades: the mating pheromone pathway and the HOG (high osmolarity glycerol response) pathway. The HOG signal transduction pathway is activated by osmotic stress and causes increased glycerol synthesis. Here, we first demonstrate that ATMEKK1 encodes a protein with kinase activity, examine its properties in yeast MAP kinase cascades, then examine its expression under stress in A. thaliana. Yeast cells expressing the A. thaliana ATMEKK1 survive and grow under high salt (NaCl) stress, conditions that kill wild-type cells. Enhanced glycerol production, observed in non-stressed cells expressing ATMEKK1 is the probable cause of yeast survival. Downstream components of the HOG response pathway, HOG1 and PBS2, are required for ATMEKK1-mediated yeast survival. Because ATMEKK1 functionally complements the sho1/ssk2/ssk22 triple mutant, it appears to function at the level of the MEKK kinase step of the HOG response pathway. In A. thaliana, ATMEKK1 expression is rapidly (within 5 min) induced by osmotic (NaCl) stress. This is the same time frame for osmoticum-induced effects on the electrical properties of A. thaliana cells, both an immediate response and adaptation. Therefore, we propose that the A. thaliana ATMEKK1 may be a part of the signal transduction pathway involved in osmotic stress.  相似文献   

14.
The osmotic tolerance of cells of Saccharomyces cerevisiae as a function of glycerol concentration and temperature has been investigated. Results show that under isothermal conditions (25 degrees C) cells are resistant (94% viability) to hyperosmotic treatment at 49.2 MPa. A thigher osmotic pressure, cell viability decreases to 25% at 99 MPa. Yeast resistance to high osmotic stress (99 Mpa) is enhanced at low temperatures (5-11 degrees C). Therefore, the temperature at which hyperosmotic pressure is achieved greatly affects cell viability. These results suggest that temperature control is a suitable means of enhancing cell survival in response to osmotic dehydration.  相似文献   

15.
In yeast (Saccharomyces cerevisiae), the regulation of three MAP kinase pathways responding to pheromones (Fus3 pathway), carbon/nitrogen starvation (Kss1 pathway), and high osmolarity/osmotic stress (Hog1 pathway) is the subject of intensive research. We were interested in the question how yeast cells would respond when more than one of the MAP kinase pathways are activated simultaneously. Here, we give a brief overview over the regulatory mechanisms of the yeast MAP kinase pathways and investigate a kinetic model based on presently known molecular interactions and feedbacks within and between the three mitogen-activated protein kinases (MAPK) pathways. When two pathways are activated simultaneously with the osmotic stress response as one of them, the model predicts that the osmotic stress response (Hog1 pathway) is turned on first. The same is true when all three pathways are activated at the same time. When testing simultaneous stimulations by low nitrogen and pheromones through the Kss1 and Fus3 pathways, respectively, the low nitrogen response dominates over the pheromone response. Due to its autocatalytic activation mechanism, the pheromone response (Fus3 pathway) shows typical sigmoid response kinetics and excitability. In the presence of a small but sufficient amount of activated Fus3, a stimulation by pheromones will lead to a rapid self-amplification of the pheromone response. This ‘excitability’ appears to be a feature of the pheromone pathway that has specific biological significance.  相似文献   

16.
Accumulation of K+ ions and glutamate plays a primary role in maintaining osmotic balance in Escherichia coli, as illustrated by the high concentrations of these ions present in cells growing in medium of high osmolality. We found that two gamma-glutamyl peptides and glutamine also accumulated during growth at high osmolarity. In a mutant unable to make trehalose growing in 1.3 osM medium, glutathione, gamma-glutamylglutamine, and glutamine accumulated to levels of 73, 33, and 140 mumol/g of protein, respectively. In such cells, K+ was present at 1,450 mumol/g of protein, indicating that glutathione and gamma-glutamylglutamine accounted for less than 10% of the low-molecular-weight anions accumulated with K+. However, glutathione is needed for wild-type osmotolerance in this species. A mutant deficient in glutathione because of an insertion in the gshA gene was unable to grow above 1.4 osM, grew more slowly at intermediate osmolarities, and took longer to adapt to growth following osmotic upshock. The involvement of glutathione in osmoregulation was independent of the effect of glutathione on K+ retention.  相似文献   

17.
We have identified mouse sphingomyelin synthase 1 as a novel suppressor of the growth inhibitory effect of heterologously expressed Bax. Yeast cells expressing sphingomyelin synthase 1 were also found to show an increased resistance to a variety of cytotoxic stimuli including hydrogen peroxide, osmotic stress and elevated temperature. Sphingomyelin synthase 1 functions by catalyzing the conversion of ceramide and phosphatidylcholine to sphingomyelin and diacylglycerol. Ceramide is an antiproliferative and proapoptotic sphingolipid whose level increases in response to a variety of stresses. Consistent with its biochemical function, yeast cells expressing sphingomyelin synthase 1 have an enhanced ability to grow in media containing the cell-permeable C2-ceramide analog as well as the ceramide precursor phytosphingosine. We also show that overexpression of AUR1, a potential yeast functional homolog of sphingomyelin synthase, also protects cells from osmotic stress. Taken together, these results suggest that sphingomyelin synthase 1 likely prevents cell death by counteracting stress-mediated accumulation of endogenous sphingolipids.  相似文献   

18.
Lactococcus lactis subsp. lactis ML3 contains high pools of proline or betaine when grown under conditions of high osmotic strength. These pools are created by specific transport systems. A high-affinity uptake system for glycine betaine (betaine) with a Km of 1.5 microM is expressed constitutively. The activity of this system is not stimulated by high osmolarities of the growth or assay medium but varies strongly with the medium pH. A low-affinity proline uptake system (Km, > 5 mM) is expressed at high levels only in chemically defined medium (CDM) with high osmolarity. This transport system is also stimulated by high osmolarity. The expression of this proline uptake system is repressed in rich broth with low or high osmolarity and in CDM with low osmolarity. The accumulated proline can be exchanged for betaine. Proline uptake is also effectively inhibited by betaine (Ki of between 50 and 100 microM). The proline transport system therefore probably also transports betaine. The inhibition of proline transport by betaine results in low proline pools in cells grown in high-osmotic-strength, betaine-containing CDM. The energy and pH dependency and the influence of ionophores on the activity of both transport systems suggest that these systems are not proton motive force driven. At low osmolarities, proline uptake is low but significant. This low proline uptake is also inhibited by betaine, although to a lesser extent than in cells grown in high-osmotic-strength CDM. These data indicate that proline uptake in L. lactis is enzyme mediated and is not dependent on passive diffusion, as was previously believed.  相似文献   

19.
The growth inhibition and the lysis of Saccharomyces cerevisiae caused by 2-deoxy-d-glucose (2-DG) were shown to be a consequence of unbalanced cellular growth and division. The lysis, but not the repression of growth and osmotic fragility of cells, could be suppressed by the addition of mannitol as an osmotic stabilizer. This result, as well as the morphological changes observed in the cells and changes in the chemical composition of the cell walls, showed that S. cerevisiae grown in the presence of 2-DG formed weakened cell walls responsible for the osmotic fragility. Evidence is presented for the first time demonstrating the incorporation of 2-DG into yeast cell wall material. Other data suggest that the inhibition of yeast growth by 2-DG results from an interference of phosphorylated metabolites of 2-DG with metabolic processes of glucose and mannose involved in the synthesis of structural cell wall polysaccharides.  相似文献   

20.
Strains of Saccharomyces cerevisiae accumulated intracellular trehalose up to 105 mg/g cell dry wt with 90% survival. Viability could be correlated to trehalose levels during ethanol fermentation albeit the disaccharide did not seem to contribute to fermentation yields. Trehalose-6-phosphate synthase showed high activity (up to 279 mu/mg protein) even at high residual sucrose concentration (115 g/l) in the wort suggesting to be a response of yeast cells to the osmotic stress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号