首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Deoxycoformycin-resistant rat hepatoma cells exhibit up to a 2000-fold increase in adenosine deaminase activity compared to the sensitive parental cells. The increased enzyme activity in these cells is accompanied by similar increases in 1) the amount of adenosine deaminase protein, 2) the relative rate of adenosine deaminase synthesis in vivo, and 3) adenosine deaminase mRNA activity. To further investigate the mechanism(s) responsible for the overproduction of adenosine deaminase in these cells, we have isolated a recombinant plasmid containing a 1.4-kilobase insert complementary to at least part of the adenosine deaminase mRNA. Using this cDNA as a specific hybridization probe, all deoxycoformycin-resistant variants were shown to have increased amounts of adenosine deaminase mRNA and gene sequences. The relative increase in the level of mRNA and gene copy number was similar to the relative increase in enzyme activity for most resistant cell lines. However, the degree of adenosine deaminase gene amplification in one deoxycoformycin-resistant cell line (6-10-200) was 3-4-fold less than the relative increase in adenosine deaminase mRNA. These results indicate that the increased adenosine deaminase activity in deoxycoformycin-resistant rat hepatoma cells is due in large part, but not exclusively, to gene amplification.  相似文献   

5.
The deamination rate of 2',3'-isopropylidene adenosine catalyzed by adenosine deaminase (ADA) from calf intestine and adenylate deaminase (AMPDA) from Aspergillus species has been evaluated and compared with that of the enzymatic reactions of adenosine, to elucidate the influence of the protecting group on enzyme activity.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
Total poly(A+) RNA derived from a mouse cell line with amplified adenosine deaminase genes was used as template to synthesize double-stranded cDNA. The cDNAs were inserted into the PstI site of the beta-lactamase gene in plasmid pBR322 following G-C tailing. After transformation into adenosine deaminase-deficient Escherichia coli hosts, recombinant plasmids containing functional murine adenosine deaminase cDNAs were identified by selecting for functional complementation. Analysis of plasmids containing functional adenosine deaminase cDNA sequences strongly suggested that adenosine deaminase expression resulted mainly from beta-lactamase/adenosine deaminase fusion proteins even when the adenosine deaminase codons were out-of-frame with respect to the beta-lactamase gene codons upstream. The nucleotide sequence of a 1.65-kilobase pair cDNA insert in one of the functional recombinant clones was determined and found to contain a 1056-nucleotide open reading frame. When this 1056-nucleotide open reading frame was inserted into a mammalian expression vector and introduced into monkey kidney cells, a high level of authentic mouse adenosine deaminase was produced. Nucleic acid blot analysis using a full-length adenosine deaminase cDNA clone as probe revealed that the mouse adenosine deaminase structural gene was at least 21 kilobase pairs in size and encoded three polyadenylated mRNAs. Analysis of the cDNA library from which the functional clones were isolated suggested that this approach of cloning functional mammalian adenosine deaminase cDNA clones by genetic complementation of enzyme-deficient bacteria could be accomplished even if the abundance of the adenosine deaminase mRNA sequences were as low as approximately 0.001%.  相似文献   

15.
16.
17.
JEG-3 is a human choriocarcinoma cell line characterized by low levels of adenosine deaminase expression. For the purpose of studying adenosine deaminase gene regulation in the JEG-3 cells, we attempted to select variant cells having increased adenosine deaminase expression. This was accomplished by selecting cells for resistance to the cytotoxic adenosine analogs 9-beta-D-arabinofuranosyl adenine (ara-A) or 9-beta-D-xylofuranosyl adenine (xyl-A), both of which could presumably be detoxified by the action of adenosine deaminase. Single step high dose selection was ineffective in obtaining cells with increased adenosine deaminase. However, multistep selection using either ara-A or xyl-A resulted in cell populations with increased adenosine deaminase activity. Removal of selective pressure resulted in decreased adenosine deaminase levels. Subclones of xyl-A-resistant cells belonged to one of three phenotypic classes characterized by either elevated adenosine deaminase levels, decreased adenosine kinase levels, or both of these features. One subclone (A3-1A7) with unaltered adenosine kinase expression showed a 20-fold increase in adenosine deaminase expression. Further selection of this subclone for increasing xyl-A resistance resulted in an additional 2-fold increase in adenosine deaminase expression, followed by loss of adenosine kinase expression. These adenosine kinase-deficient cells showed no subsequent increase in adenosine deaminase expression in response to further xyl-A selection pressure. These results confirmed that xyl-A toxicity was mediated through its phosphorylated form and indicated that resistance may result from increased adenosine deaminase levels and/or adenosine kinase deficiency. The increased adenosine deaminase expression of the A3-1A7 subclone was exclusively in the ADA 2 allelic form. However, cell fusion experiments between A3-1A7 cells and mouse C1-1D cells established the existence of functional copies of both ADA 1 and ADA 2 allelic genes in the A3-1A7 cells. The increased expression of only one of the two functional ADA alleles, the requirement for a stepwise selection protocol to obtain cells with increased adenosine deaminase, and the instability of the adenosine deaminase phenotype in the absence of selective pressure suggest that the alteration of adenosine deaminase phenotype in the drug-resistant cells was the result of adenosine deaminase gene amplification.  相似文献   

18.
19.
A previously isolated mouse Cl-1D derived cell line (B-1/25) overproduces adenosine deaminase (EC 3.5.4.4) by 3200-fold. The present studies were undertaken to determine the molecular basis of this phenomenon. Rabbit reticulocyte lysate and Xenopus oocyte translation studies indicated that the B-1/25 cells also overproduced adenosine deaminase mRNA. Total poly(A+) RNA derived from B-1/25 was used to construct a cDNA library. After prehybridization with excess parental Cl-1D RNA to selectively prehybridize nonamplified sequences, 32P-labeled cDNA probe synthesized from B-1/25 total poly(A+) RNA was used to identify recombinant colonies containing amplified mRNA sequences. Positive clones containing adenosine deaminase gene sequences were identified by blot hybridization analysis and hybridization-selected translation in both rabbit reticulocyte lysate and Xenopus oocyte translation systems. Adenosine deaminase cDNA clones hybridized with three poly(A+) RNA species of 1.5, 1.7, and 5.2 kilobases in length, all of which were overproduced in the B-1/25 cell line. Dot blot hybridization analysis using an adenosine deaminase cDNA clone showed that the elevated adenosine deaminase level in the B-1/25 cells was fully accounted for by an increase in adenosine deaminase gene copy number. The adenosine deaminase cDNA probes and the cell lines with amplified adenosine deaminase genes should prove extremely useful in studying the structure and regulation of the adenosine deaminase gene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号