首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The syntheses of 10 new RNA 2'-O-modifications, their incorporation into oligonucleotides, and an evaluation of their properties such as RNA affinity and nuclease resistance relevant to antisense activity are presented. All modifications combined with the natural phosphate backbone lead to significant gains in terms of the stability of hybridization to RNA relative to the first-generation DNA phosphorothioates (PS-DNA). The nuclease resistance afforded in particular by the 2'-O-modifications carrying a positive charge surpasses that of PS-DNA. However, small electronegative 2'-O-substituents, while enhancing the RNA affinity, do not sufficiently protect against degradation by nucleases. Similarly, oligonucleotides containing 3'-terminal residues modified with the relatively large 2'-O-[2-(benzyloxy)ethyl] substituent are rapidly degraded by exonucleases, proving wrong the assumption that steric bulk will generally improve protection against nuclease digestion. To analyze the factors that contribute to the enhanced RNA affinity and nuclease resistance we determined crystal structures of self-complementary A-form DNA decamer duplexes containing single 2'-O-modified thymidines per strand. Conformational preorganization of substituents, favorable electrostatic interactions between substituent and sugar-phosphate backbone, and a stable water structure in the vicinity of the 2'-O-modification all appear to contribute to the improved RNA affinity. Close association of positively charged substituents and phosphate groups was observed in the structures with modifications that protect most effectively against nucleases. The promising properties exhibited by some of the analyzed 2'-O-modifications may warrant a more detailed evaluation of their potential for in vivo antisense applications. Chemical modification of RNA can also be expected to significantly improve the efficacy of small interfering RNAs (siRNA). Therefore, the 2'-O-modifications introduced here may benefit the development of RNAi therapeutics.  相似文献   

2.
Abstract

Oligonucleotides with modifications at the carbohydrate 2′-position offer potential second-generation drug candidates1. ISIS 13312, a chimeric compound targeting CMV retinitis, has 2′-O-methoxyethyl2 (2′-MOE) modifications at the ends to offer enhanced binding affinity and nuclease resistance is an example of this trend. 2′-MOE modification offers high binding affinity and nuclease resistance presumably due to conformational constraints placed on the linkage by the oxygen-oxygen gauche effect3. On the other hand, 2′-O-aminopropyl modification (2′-AP) exhibits the highest nuclease resistance4, due to the presence of a cationic charge at the physiological pH. However, it lacks the binding affinity advantage of MOE due to the lack of oxygen-oxygen gauche effect. To optimize the antisense properties of both 2′-MOE and 2′-AP modifications, we have designed and constructed 2′-O-(aminooxyethyl) modification (2′-AOE)5 and 2′-O-(dimethylaminooxy ethyl) modification (2′-DMAOE) and synthesized oligomers having these modifications. 2′-DMAOE oligomers demonstrate higher binding affinity and nuclease resistance than 2′-MOE oligomers and stand out as promising candidates for future antisense oligonucleotide drug development.  相似文献   

3.
Chemically modified nucleic acids (CNAs) are widely explored as antisense oligonucleotide or small interfering RNA (siRNA) candidates for therapeutic applications. CNAs are also of interest in diagnostics, high‐throughput genomics and target validation, nanotechnology and as model systems in investigations directed at a better understanding of the etiology of nucleic acid structure, as well as the physicochemical and pairing properties of DNA and RNA, and for probing protein–nucleic acid interactions. In this article, we review research conducted in our laboratory over the past two decades with a focus on crystal‐structure analyses of CNAs and artificial pairing systems. We highlight key insights into issues ranging from conformational distortions as a consequence of modification to the modulation of pairing strength, and RNA affinity by stereoelectronic effects and hydration. Although crystal structures have only been determined for a subset of the large number of modifications that were synthesized and analyzed in the oligonucleotide context to date, they have yielded guiding principles for the design of new analogs with tailor‐made properties, including pairing specificity, nuclease resistance, and cellular uptake. And, perhaps less obviously, crystallographic studies of CNAs and synthetic pairing systems have shed light on fundamental aspects of DNA and RNA structure and function that would not have been disclosed by investigations solely focused on the natural nucleic acids.  相似文献   

4.
The solution-state structure of 2′-O-(2-methoxyethly) substituted dodecamer r(*CG*CGAA*U*U*CG*C)d(G), 2′-MOE RNA, with all cytosines and uracils methylated at the C5-position has been determined by NMR spectroscopy. The chemical modifications were used to improve the oligonucleotide's drug-like properties. The 2′-MOE group drives pseudorotational equilibrium of the ribofuranose moiety to the N-type conformation and supposedly results in structural preorganization leading to high affinity of a modified oligonucleotide towards its complementary biological target, improved pharmacokinetic and toxicological properties. The high melting temperature of the antiparallel duplex structure adopted by 2′-MOE RNA was explained through the formation of a stable A-form RNA consistent with effective base-pairing and stacking interactions. The comparison of the solution-state structure with the crystal structure of a non-methylated analogue shows an increase in the stacking at the base pair steps for the C5-methylated 2′-MOE RNA duplex. The MOE substituents adopt a well-defined structure in the minor groove with the predominant gauche conformations around the ethylene bond.  相似文献   

5.
A high RNA binding affinity and nuclease resistance of 2'-O-modified (2'-O-methyl, 2'-O-tetrahydropyranyl) oligoribonucleotides containing the "inverted" T at the 3'-end have been shown. The synthesis and properties of new photoactivatable perfluoroarylazide derivatives of these oligoribonucleotides are discussed.  相似文献   

6.
There is an extensive research carrying out on antisense technology and the molecules entering into clinical trials are increasing rapidly. Phosphorothioate (PS) is a chemical modification in which nonbridged oxygen is replaced with a sulfur, consequently providing resistance against nuclease activity. The 2'-4' conformationally restricted nucleoside has the structural features of both 2'-O-methoxy ethyl RNA (MOE), which shows good toxicity profile, and locked nucleic acid (LNA), which shows good binding affinity towards the target RNA. These modifications have been studied and suggested that they can be a potential therapeutic agents in antisense therapy. Mipomersen (ISIS 301012), which contains the novel nucleoside modification has been used to target to apolipoprotein (Apo B), which reduces LDL cholesterol by 6–41%. In this study, classical molecular dynamics (MD) simulations were performed on six different antisense gapmer/target-RNA oligomer duplexes (LNA-PS-LNA/RNA, RcMOE-PS-RcMOE/RNA, ScMOE-PS-ScMOE/RNA, MOE-PS-MOE/RNA, PS-DNA/RNA and DNA/RNA) to investigate the structural dynamics, stability and solvation properties. The LNA, MOE nucleotides present in respective duplexes are showing the structure of A-form and the PS-DNA nucleotides resemble the structure of B-form helix with respect to some of the helical parameters. Free energy calculations suggest that the oligomer, which contains LNA binds to the RNA strongly than other modifications as shown in experimental results. The MOE modified nucleotide, which although had a lower binding affinity but higher solvent accessible surface area (SASA) compared to the other modifications, may be influencing the toxicity and hence may be used it in Mipomersen, the second antisense molecule which is approved by FDA.

Communicated by Ramaswamy H. Sarma  相似文献   


7.
A high RNA binding affinity and nuclease resistance of 2′-O-modified (2′-O-methyl, 2′-O-tetrahydropyranyl) oligoribonucleotides containing the “inverted” T at the 3′-end have been shown. The synthesis and properties of new photoactivatable perfluoroarylazide derivatives of these oligoribonucleotides are discussed.  相似文献   

8.
Phosphorothioate deoxyribonucleotides (PS-DNA) are among the most widely used antisense inhibitors. PS-DNA exhibits desirable properties such as enhanced nuclease resistance, improved bioavailability, and the ability to induce RNase H mediated degradation of target RNA. Unfortunately, PS-DNA possesses a relatively low binding affinity for target RNA that impacts on its potency in antisense applications. We recently showed that phosphodiester-linked oligonucleotides comprised of 2'-deoxy-2'-fluoro-D-arabinonucleic acid (FANA) exhibit both high binding affinity for target RNA and the ability to elicit RNase H degradation of target RNA [Damha et al. (1998) J. Am. Chem. Soc. 120, 12976]. In the present study, we evaluated the antisense activity of phosphorothioate-linked FANA oligonucleotides (PS-FANA). Oligonucleotides comprised entirely of PS-FANA were somewhat less efficient in directing RNase H cleavage of target RNA as compared to their phosphorothioate-linked DNA counterparts, and showed only weak antisense inhibition of cellular target expression. However, mixed-backbone oligomers comprised of PS-FANA flanking a central core of PS-DNA were found to possess potent antisense activity, inhibiting specific cellular gene expression with EC(50) values of less than 5 nM. This inhibition was a true antisense effect, as indicated by the dose-dependent decrease in both target protein and target mRNA. Furthermore, the appearance of mRNA fragments was consistent with RNase H mediated cleavage of the mRNA target. We also compared a series of PS-[FANA-DNA-FANA] mixed-backbone oligomers of varying PS-DNA core sizes with the corresponding 2'-O-methyl oligonucleotide chimeras, i.e., PS-[2'meRNA-DNA-2'meRNA]. Both types of oligomers showed very similar binding affinities toward target RNA. However, the antisense potency of the 2'-O-methyl chimeric compounds was dramatically attenuated with decreasing DNA core size, whereas that of the 2'-fluoroarabino compounds was essentially unaffected. Indeed, a PS-FANA oligomer containing a single deoxyribonucleotide residue core retained significant antisense activity. These findings correlated exactly with the ability of the various chimeric antisense molecules to elicit RNase H degradation of the target RNA in vitro, and suggest that this mode of inhibition is likely the most important determinant for potent antisense activity.  相似文献   

9.
The 2'-position of the carbohydrate moiety has proven to be a fertile position for oligonucleotide modifications for antisense technology. The 2'-modifications exhibit high binding affinity to target RNA, enhanced chemical stability and nuclease resistance and increased lipophilicity. All high binding affinity 2'-modifications have C3'-endo sugar pucker. In addition to gauche effects, charge effects are also important in determining the level of their nuclease resistance. Pharmacokinetic properties of oligonucleotides are altered by 2'-conjugates. For certain modifications (e.g., 2'-F), the configuration at the 2'-position, arabino vs. ribo, determines their ability to activate the enzyme RNase H.  相似文献   

10.
The tricyclic cytosine analogues phenoxazine and 9-(2-aminoethoxy)-phenoxazine ("G-clamp") are known to significantly enhance the binding affinity of oligonucleotides to their complementary target DNA or RNA strands. To investigate their effect on the nuclease resistance, they were incorporated into model oligomers with a natural phosphodiester backbone, and enzymatic degradation was monitored in an in vitro assay with snake venom phosphodiesterase as the hydrolytic enzyme. In both cases, a single incorporation at the 3'-terminus completely protected the oligonucleotides against 3'-exonuclease attack. Further investigations indicate that the observed high nuclease resistance is not due to the lack of binding affinity to the enzyme's active site, since these modified oligonucleotides were able to inhibit degradation of a natural DNA fragment by bovine intestinal mucosal phosphodiesterase in a dose-dependent manner.  相似文献   

11.
A novel 2'-modification, 2'-O-[2-(methylthio)ethyl] or 2'-O-MTE, has been incorporated into oligonucleotides and evaluated for properties relevant to antisense activity. The results were compared with the previously characterized 2'-O-[2-(methoxy)ethyl] 2'-O-MOE modification. As expected, the 2'-O-MTE modified oligonucleotides exhibited improved binding to human serum albumin compared to the 2'-O-MOE modified oligonucleotides. The 2'-O-MTE oligonucleotides maintained high binding affinity to target RNA. Nuclease digestion of 2'-O-MTE oligonucleotides showed that they have limited resistance to exonuclease degradation. We analyzed the crystal structure of a decamer DNA duplex containing the 2'-O-MTE modifcation. Analysis of the crystal structure provides insight into the improved RNA binding affinity, protein binding affinity and limited resistance of 2'-O-MTE modified oligonucleotides to exonuclease degradation.  相似文献   

12.
We have synthesized diastereomerically pure diadenosine 3',5'-boranophosphates (Ap(b)A) by using the boranophosphotriester method from ribonucleosides protected with the 2'-hydroxy protecting group 2-cyanoethoxymethyl (CEM). Melting curves of the triple-helical complex of the dimer Ap(b)A and 2poly(U) at high ionic strength revealed that presumptive (Sp)-Ap(b)A had a much higher affinity and presumptive (Rp)-Ap(b)A a much lower affinity for poly(U) than the natural dimer ApA did. In contrast, the affinities of these dimers for poly(dT) were similar. Both the (Rp)- and the (Sp)-boranophosphate diastereomers showed much higher resistance to digestion by snake venom phosphodiesterase and nuclease P1 than ApA did. They have potential for use as synthons to be incorporated into boranophosphate oligonucleotides. In particular, because oligonucleotides containing Sp boranophosphate nucleotides are expected to bind more strongly and specifically to RNA than natural oligoribonucleotides do, they may find application in the isolation and detection of functional RNA in basic research and diagnostics.  相似文献   

13.
Abstract

Fully thioated antisense molecules are often cytotoxic and non-specitic in action. GPI2A is thioated at 7 base positions. GPI2A posses sequence-specific activity against HIV-1 gene expression and viral replication without sigdcant cytotoxicity. Partial thioation did not compromise its uptake, cellular distribution and nuclease resistance.  相似文献   

14.
Methylphosphonate-modified oligo-2'-O-methylribonucleotides 15-20 nucleotides (nt) in length were prepared whose sequences are complementary to the 5' and 3' sides of the upper hairpin of HIV trans-acting response element (TAR) RNA. These anti-TAR oligonucleotides (ODNs) form stable hairpins whose melting temperatures (Tm) range from 55 degrees C to 80 degrees C. Despite their rather high thermal stabilities, the hairpin oligo-2'-O-methylribonucleotides formed very stable complexes with TAR RNA, with dissociation constants in the nanomolar concentration range at 37 degrees C. The affinities of the hairpin oligomers for TAR RNA were influenced by the positions of the methylphosphonate linkages. The binding affinity was reduced approximately 17-fold by the presence of two methylphosphonate linkages in the TAR loop complementary region (TLCR) of the oligomer, whereas methylphosphonate linkages outside this region increased binding affinity approximately 3-fold. The configurations of the methylphosphonate linkages in the TLCR also affected binding affinity, with the RpRp isomer showing significantly higher binding than the SpSp isomer. In addition to serving as probes of the interactions between the oligomer and TAR RNA, the presence of the methylphosphonate linkages in combination with the hairpin structure increases the resistance of these oligomers to degradation by exonucleases found in mammalian serum. The combination of high binding affinity and nuclease resistance of the hairpin ODNs containing methylphosphonate linkages suggests their potential utility as antisense compounds.  相似文献   

15.
Augmented biological activity in vitro has been demonstrated in oligonucleotides (oligos) modified to provide nuclease resistance, to enhance cellular uptake or to increase target affinity. How chemical modification affects the duration of effect of an oligo with potent activity has not been investigated directly. We postulated that modification with internucleotide phosphorothioates and 3' alkylamine provided additional nuclease protection which could significantly extend the biological activity of a 26 mer, (T2). We showed this analog, sT2a, could maximally inhibit interferon gamma-induced HLA-DR mRNA synthesis and surface expression in both HeLa and retinal pigmented epithelial cells and could continue to be effective, in the absence of oligo, 15 days following initial oligo treatment; an effect not observed with its 3'amine counterpart, T2a. In vitro stability studies confirmed that sT2a conferred the greatest stability to nucleases and that cellular accumulation of 32P-sT2a in both cell types was also greater than other T2 oligos. Using confocal microscopy, we revealed that the intracellular distribution of sT2a favored greater nuclear accumulation and release of oligo from cytoplasmic vesicles; a pattern not observed with T2a. These results suggest that phosphorothioate-3'amine modification could increase the duration of effect of T2 oligo by altering nuclease resistance as well as intracellular accumulation and distribution; factors known to affect biological availability.  相似文献   

16.
Oligonucleotides containing 5-(N-aminohexyl)carbamoyl-modified uracils have promising features for applications as antigene and antisense therapies. Relative to unmodified DNA, oligonucleotides containing 5-(N-aminohexyl)carbamoyl-2′-deoxyuridine (NU) or 5-(N-aminohexyl)carbamoyl-2′-O-methyluridine (NUm), respectively exhibit increased binding affinity for DNA and RNA, and enhanced nuclease resistance. To understand the structural implications of NU and NUm substitutions, we have determined the X-ray crystal structures of DNA:DNA duplexes containing either NU or NUm and of DNA:RNA hybrid duplexes containing NUm. The aminohexyl chains are fixed in the major groove through hydrogen bonds between the carbamoyl amino groups and the uracil O4 atoms. The terminal ammonium cations on these chains could interact with the phosphate oxygen anions of the residues in the target strands. These interactions partly account for the increased target binding affinity and nuclease resistance. In contrast to NU, NUm decreases DNA binding affinity. This could be explained by the drastic changes in sugar puckering and in the minor groove widths and hydration structures seen in the NUm containing DNA:DNA duplex structure. The conformation of NUm, however, is compatible with the preferred conformation in DNA:RNA hybrid duplexes. Furthermore, the ability of NUm to render the duplexes with altered minor grooves may increase nuclease resistance and elicit RNase H activity.  相似文献   

17.
Abstract

Chemical modifications to improve the efficacy of an antisense oligonucleotide are designed to increase the binding affinity to target RNA, to enhance the nuclease resistance, and to improve cellular delivery. Among the different sites available for chemical modification in a nucleoside building block, the 2′-position of the carbohydrate moiety1 has proven to be the most valuable for various reasons: (1) 2′-modification can confer an RNA-like 3′-endo conformation to the antisense oligonucleotide. Such a preorganization for an RNA like conformation2,3,4,5 greatly improves the binding affinity to the target RNA; (2) 2′-modification provides nuclease resistance to oligonucleotides; (3) 2′-modification provides chemical stability against potential depurination conditions pharmacology evaluations and correlation with pharmacokinetic changes are emerging from these novel chemical modifications. Analytical chemistry of modified oligonucleotides before and after biological administration of antisense oligonucleotides with techniques such as capillary gel electrophoresis (CGE) and mass spectrometry help to determine the purity as well as the in vivo fate of these complex molecules. Large-scale synthesis is becoming a tangible reality for antisense oligonucleotides. Nucleic acid chemists and biologists alike are beginning to understand the structure-biological activity in terms of basic physical-organic parameters such as the gauche effect, the charge effect and conformational constraints. Synthesis of chimeric designer oligonucleotides bringing the attractive features of different modifications to a given antisense oligonucleotide sequence to generate synergistic interactions is forthcoming30. These advances along with the potential availability of complete human genome sequence information promise a bright future for the widespread use of nucleic acid based therapeutics.  相似文献   

18.
Substitution of oxygen atoms by sulfur at various locations in the nucleic acid framework has led to analogs such as the DNA phosphorothioates and 4′-thio RNA. The phosphorothioates are excellent mimics of DNA, exhibit increased resistance to nuclease degradation compared with the natural counterpart, and have been widely used as first-generation antisense nucleic acid analogs for applications in vitro and in vivo. The 4′-thio RNA analog exhibits significantly enhanced RNA affinity compared with RNA, and shows potential for incorporation into siRNAs. 2-Thiouridine (s2U) and 5-methyl-2-thiouridine (m5s2U) are natural nucleotide analogs. s2U in tRNA confers greater specificity of codon–anticodon interactions by discriminating more strongly between A and G compared with U. 2-Thio modification preorganizes the ribose and 2′-deoxyribose sugars for a C3′-endo conformation, and stabilizes heteroduplexes composed of modified DNA and complementary RNA. Combination of the 2-thio and sugar 2′-O-modifications has been demonstrated to boost both thermodynamic stability and nuclease resistance. Using the 2′-O-[2-(methoxy)ethyl]-2-thiothymidine (m5s2Umoe) analog, we have investigated the consequences of the replacement of the 2-oxygen by sulfur for base-pair geometry and duplex conformation. The crystal structure of the A-form DNA duplex with sequence GCGTAT*ACGC (T* = m5s2Umoe) was determined at high resolution and compared with the structure of the corresponding duplex with T* = m5Umoe. Notable changes as a result of the incorporation of sulfur concern the base-pair parameter ‘opening’, an improvement of stacking in the vicinity of modified nucleotides as measured by base overlap, and a van der Waals interaction between sulfur atoms from adjacent m5s2Umoe residues in the minor groove. The structural data indicate only minor adjustments in the water structure as a result of the presence of sulfur. The observed small structural perturbations combined with the favorable consequences for pairing stability and nuclease resistance (when combined with 2′-O-modification) render 2-thiouracil-modified RNA a promising candidate for applications in RNAi.  相似文献   

19.
We have previously described the characterization of a 20mer phosphorothioate oligodeoxynucleotide (ISIS 4189) which inhibits murine protein kinase C-alpha (PKC-alpha) gene expression, both in vitro and in vivo. In an effort to increase the antisense activity of this oligonucleotide, 2'-O-propyl modifications have been incorporated into the 5'- and 3'-ends of the oligonucleotide, with the eight central bases left as phosphorothioate oligodeoxynucleotides. Hybridization analysis demonstrated that these modifications increased affinity by approximately 8 and 6 degrees C per oligonucleotide for the phosphodiester (ISIS 7815) and phosphorothioate (ISIS 7817) respectively when hybridized to an RNA complement. In addition, 2'-O-propyl incorporation greatly enhanced the nuclease resistance of the oligonucleotides to snake venom phosphodiesterase or intracellular nucleases in vivo. The increase in affinity and nuclease stability of ISIS 7817 resulted in a 5-fold increase in the ability of the oligonucleotide to inhibit PKC-alpha gene expression in murine C127 cells, as compared with the parent phosphorothioate oligodeoxynucleotide. Thus an RNase H-dependent phosphorothioate oligodeoxynucleotide can be modified as a 2'-O-propyl 'chimeric' oligonucleotide to provide a significant increase in antisense activity in cell culture.  相似文献   

20.
Oligodeoxynucleotide libraries containing randomly incorporated bases are used to generate DNA aptamers by systematic evolution of ligands by exponential enrichment (SELEX). We predicted that combinatorial libraries with alternative base compositions might have innate properties different from the standard library containing equimolar A + C + G + T bases. In particular, we hypothesized that G-rich libraries would contain a higher proportion of quadruplex-forming sequences, which may impart desirable qualities, such as increased nuclease resistance and enhanced cellular uptake. Here, we report on 11 synthetic oligodeoxynucleotide libraries of various base combinations and lengths, with regard to their circular dichroism, stability in serum-containing medium, cellular uptake, protein binding and antiproliferative activity. Unexpectedly, we found that some G-rich libraries (composed of G + T or G + C nucleotides) strongly inhibited cancer cell growth while sparing non-malignant cells. These libraries had spectral features consistent with G-quadruplex formation, were significantly more stable in serum than inactive libraries and showed enhanced cellular uptake. Active libraries generally had strong protein binding, while the pattern of protein binding suggested that G/T and G/C libraries have distinct mechanisms of action. In conclusion, cancer-selective antiproliferative activity may be a general feature of certain G-rich oligodeoxynucleotides and is associated with quadruplex formation, nuclease resistance, efficient cellular uptake and protein binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号