首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The glycosylation of apo very low density lipoproteins (apo-VLDL) in vivo was studied by following the incorporation of [14C]glucosamine into several groups of apoproteins of VLDL isolated from hepatic Golgi fractions and from serum of sucrose-fed, colchicine-treated rats. Simultaneous incorporation of [3H]leucine was used to quantitate the apoproteins following separation by polyacrylamide gel electrophoresis. Experimental conditions were selected so that the 14C:3H ratio in the apoproteins permitted estimations of the extent of glycosylation by glucosamine and its metabolites. A rapidly decreasing 14C:3H ratio was noted in serum apo-VLDL for the first 30 min after administration of the isotopically labelled precursors, followed by stabilization of the ratio. These data are consistent with the glycosylation of a preformed pool of apo-VLDL, probably apo-B. Glucosamine was progressively incorporated into apo-VLDL during transition from the forming face of the Golgi apparatus to the secretory vesicles, as indicated by an increasing 14C:3H ratio. On the other hand, the ratio of the rapidly migrating apoproteins of VLDL, corresponding to the apo-C-II and apo-C-III, showed the opposite trend, as did total apo high density lipoprotein (apo-HDL) and the rapidly migrating bands of apo-HDL. Division of the rapidly migrating apoproteins of VLDL into upper bands (probably apo-C-II and apo-C-III-0) and lower bands (probably apo-C-III-3) resulted in a 14C:3H ratio near zero in the upper band apoproteins, consistent with the absence of carbohydrates. The lower band showed a rising 14C:3H ratio during transition through the Golgi apparatus, suggesting increased glycosylation, The decreasing 14C:3H ratio in the rapidly migrating proteins is therefore due to the acquisition of apo-C-II and apo-C-III-0 by VLDL during passage from the forming face to the secretory vesicles of the Golgi apparatus.  相似文献   

2.
In order to assess the genetic control of sizes and concentrations of mouse plasma low density (LDL) and high density lipoproteins (HDL), we used gel permeation fast protein liquid chromatography (FPLC) and nondenaturing gradient polyacrylamide gel electrophoresis to measure the particle sizes of LDL and HDL. Using chromatography we also quantified LDL-cholesterol and HDL-cholesterol concentrations in plasma and used them as indexes of plasma concentrations of the respective particles among 10 inbred strains (AKR/J, BALB/cByJ, C3H/HeJ, C57BL/6J, C57BL/6ByJ, C57L/J, DBA/1LacJ, 129/J, NZB/BINJ, SWR/J) and three sets of recombinant inbred (RI) strains (AKXL/TyJ, BXH/TyJ, CXB/ByJ) of mice. HDL had a dichotomous distribution among the 10 inbred strains. One group had large HDL particle sizes and high HDL-cholesterol concentrations. Another group had smaller HDL particles and lower HDL-cholesterol concentrations, and HDL sizes and HDL-cholesterol concentrations were significantly correlated. In the RI strains, HDL sizes and HDL-cholesterol cholesterol concentrations clearly segregated with one or another of the progenitor strains, and RI strain distributions showed a strong linkage to the apolipoprotein (apo) A-II gene (Apoa-2). In contrast, LDL-cholesterol concentrations and particle sizes on FPLC did not show dichotomous distributions among the 10 inbred strains. In RI strains, the configuration of the LDL FPLC profiles and LDL-cholesterol concentrations did resemble one or another of the progenitors in the majority of cases, but LDLs of several RI strains resembled neither progenitor strain in profile configuration, and LDL-cholesterol concentrations were both greater and smaller than those of progenitor strains. However, LDL particle diameters (as judged by peaks of LDL-cholesterol profiles) did segregate with progenitors in 29/33 (88%) of RI strains suggesting that a major gene may affect LDL size. In attempting to identify a major LDL-size determining gene, we compared apoB gene restriction fragment length polymorphisms (RFLPs) to the distributions of peak LDL sizes in RI strains. Concordance rates of peak LDL sizes to apoB gene polymorphisms were 18/22 (82%) for the EcoRV RFLP, 5/7 (71%) for HindIII RFLP, and 23/29 (79%) for both (range of P values 0.90-0.95). Thus we could not unequivocally implicate the apoB gene in determining the size of LDL particles. In summary, the genetic control of LDL sizes is more complicated than is the case for HDL; however, the differences in LDL size among these strains of mice may be controlled by a major, as yet unidentified, gene.  相似文献   

3.
The phospholipid composition of nascent very low density lipoproteins (VLDL) of rat hepatocytic Golgi fractions differs greatly from that of plasma VLDL. The phospholipids of nascent VLDL contain about four times more phosphatidylethanolamine (PE) than plasma VLDL, whereas plasma VLDL contain considerably more sphingomyelin. Thus, the ratio of PE to sphingomyelin differs by a factor of about 12 between nascent Golgi VLDL and circulating plasma VLDL. It is evident from these data that the PE/sphingomyelin ratio of VLDL can be used to estimate endosomal contamination of hepatocytic Golgi fractions.  相似文献   

4.
Three separate studies were carried out to test the hypothesis that rat liver secretes vitamin E (alpha-tocopherol) within very low density lipoproteins (VLDL). i) When the clearance of plasma chylomicrons (CM) and VLDL was blocked by the administration of Triton WR-1339, alpha-tocopherol concentrations increased linearly with time in both classes of triacylglycerol-rich lipoproteins, although accumulation rates within VLDL exceeded those within CM. For fasted rats, appearance of alpha-tocopherol in VLDL persisted at slightly reduced rates. alpha-Tocopherol and triglycerides in the VLDL fraction responded to Triton WR-1339 administration by coordinate increases. In contrast to the situation in serum, alpha-tocopherol concentrations decreased in the liver following injection of Triton. ii) In order to inhibit the secretion of hepatic lipoproteins containing apolipoprotein B (apoB), rats were fed a diet containing orotic acid. This resulted in a reduction of apoB and alpha-tocopherol concentrations in serum and VLDL, whereas the vitamin E content of liver was increased. iii) In primary cultures of hepatocytes, alpha-tocopherol was secreted into the culture media predominantly within VLDL. We, therefore, conclude that the liver secretes alpha-tocopherol within VLDL and in this way contributes to the maintenance of serum vitamin E concentrations.  相似文献   

5.
6.
Interactions of high density lipoproteins (HDL) with very low (VLDL) and low (LDL) density lipoproteins were investigated during in vitro lipolysis in the presence of limited free fatty acid acceptor. Previous studies had shown that lipid products accumulating on lipoproteins under these conditions promote the formation of physical complexes between apolipoprotein B-containing particles (Biochim. Biophys. Acta, 1987. 919: 97-110). The presence of increasing concentrations of HDL or delipidated HDL progressively diminished VLDL-LDL complex formation. At the same time, association of HDL-derived apolipoprotein (apo) A-I with both VLDL and LDL could be demonstrated by autoradiography of gradient gel electrophoretic blots, immunoblotting, and apolipoprotein analyses of reisolated lipoproteins. The LDL increased in buoyancy and particle diameter, and became enriched in glycerides relative to cholesterol. Both HDL2 and HDL3 increased in particle diameter, buoyancy, and relative glyceride content, and small amounts of apoA-I appeared in newly formed particles of less than 75 A diameter. Association of apoA-I with VLDL or LDL could be reproduced by addition of lipid extracts of lipolyzed VLDL or purified free fatty acids in the absence of lipolysis, and was progressively inhibited by the presence of increasing amounts of albumin. We conclude that lipolysis products promote multiple interactions at the surface of triglyceride-rich lipoproteins undergoing lipolysis, including physical complex formation with other lipoprotein particles and transfers of lipids and apolipoproteins. These processes may facilitate remodeling of lipoproteins in the course of their intravascular metabolism.  相似文献   

7.
8.
The incorporation of labeled amino acids into the peptides of very low density lipoproteins (VLDL) and high density lipoproteins (HDL) secreted by perfused rat liver was studied using a Ringer-albumin solution in the perfusate in place of serum to diminish exchange of peptides between VLDL and HDL. Among the lipoproteins, the greatest release of protein, greatest incorporation of amino acid, and highest specific activity were found in VLDL. After separation of the delipidated peptides by electrophoresis on polyacrylamide gel, the incorporation into VLDL peptides was found to be 5-10 times as great as into HDL peptides. There was virtually no incorporation into the peptides of low density lipoproteins (LDL). Approximately 25% of the radioactivity incorporated into perfusate VLDL failed to enter the 13% polyacrylamide gel. The remaining radioactivity was distributed primarily among three peptide bands; one, found in the upper portion of the gel, contained 45% of the total, most of the remainder being found in two rapidly migrating bands. These three peptides appear to approximate those of human apo-C in relative electrophoretic mobility. Most of the HDL peptide radioactivity entering the running gel was found in a band that migrates slightly faster than the main VLDL band. A portion of the radioactivity of this major HDL band did not enter the running gel unless beta-mercaptoethanol was present. Greater separation of these two bands by polyacrylamide gel electrophoresis for 24 hr confirmed that the major bands in VLDL and in HDL were different. The rapidly moving peptides of HDL were found to contain very little radioactivity. Determination of the intensity of staining of carrier-free perfusate VLDL and HDL peptides produced a pattern similar to the incorporation of labeled amino acids. It is concluded that the rapidly moving peptides, which may contain activators of lipoprotein lipase, are only secreted as part of the VLDL.  相似文献   

9.
Enzymatically isolated rat liver parenchymal cells secreted labeled triacylglycerols when incubated with [3H]glycerol or [3H]oleic acid. The presence of albumin or serum did not affect the secretion, but it was strongly inhibited by cycloheximide, colchicine, EDTA and by incubating at 4°C instead of at 37°C. Analyses of incubation media by agarose gel electrophoresis and by ultracentrifugation showed that the labeled triacylglycerols were in particles with the properties of very low density lipoproteins.  相似文献   

10.
11.
12.
The structural and metabolic heterogeneity of low density lipoproteins (LDL, d 1.024-1.100 g/ml) has been investigated in the guinea pig. Two LDL subfractions, of d 1.024-1.050 and 1.050-1.100 g/ml, respectively, were isolated by sequential ultracentrifugation; while both were enriched in cholesteryl ester and apoB-100, the former was heterogeneous displaying three particle size species of diameters 26.9, 25.6, and 24.7 nm, whereas the denser subfraction was relatively homogeneous containing a single, smaller species (diam. 23.6 nm). The fractional catabolic rates (FCR) of the two LDL subfractions were alike (approximately 0.090 pools/hr) in the guinea pig in vivo. After modification of each subfraction by reductive methylation, the FCRs were reduced similarly and indicated that 70-80% of degradation occurred via the cellular LDL receptor pathway. However, the intravascular metabolism of these LDL subfractions, determined from the radioactive content of density gradient fractions as a function of time after injection of radiolabeled native or chemically modified LDL, tended to be distinct. Thus, while radiolabeled apoB-100 in the lighter subfraction maintained the initial density profile up to 48 hr, the radioactive profile of its methylated counterpart changed, the proportion of radioactivity in the lighter gradient fractions (d 1.027-1.032 g/ml) increasing while that in the denser (d 1.037-1.042 g/ml) fractions diminished. A more marked transformation occurred in LDL of d 1.050-1.100 g/ml, in which the radioactive profile shifted towards lighter particles of the d 1.024-1.050 g/ml species; this shift was partially dependent on the LDL receptor, since it was more pronounced in the methylated subfraction. Furthermore, a net increase in the radioactive content of gradient subfractions 7 to 9 (d 1.032-1.042 g/ml) was found 10 hr after injection of methylated LDL of d 1.050-1.100 g/ml, at which time the bulk of LDL radioactivity had been removed from plasma. Several mechanisms, acting alone or in combination, may account for these findings; among them, some degree of transformation of dense to lighter LDL species appears a prerequisite. In conclusion, our data attest to the structural heterogeneity of circulating LDL in the guinea pig, and suggest that the intravascular processing and metabolism of LDL particle subspecies is directly related to their structure and physicochemical properties.  相似文献   

13.
14.
The formation of low density lipoprotein (LDL) from very low density lipoprotein (VLDL) was studied after injecting 14C-radiomethylated or 125I-radioiodinated VLDL into rats. VLDL and LDL B apoprotein specific radioactivity time curves were obtained after tetramethylurea extraction of the lipoproteins. In all experiments, the specific activity of LDL B apoprotein did not intercept the VLDL curve at maximal heights, suggesting that not all LDL B apoprotein is derived from VLDL B apoprotein. Further subfractionation of LDL into the Sf 12-20, 5-12, and 0-5 ranges showed that most (65%) LDL B apoprotein was present in the Sf 0-5 fraction and that only a small proportion (6-15%) of this fraction was derived from VLDL. However, the curves obtained for the Sf 12-20 and 5-12 subfractions were consistent with a precursor-product relationship in which all of these fractions were derived entirely from VLDL catabolism. These results contrasted strikingly with similar data obtained for normal humans in which all LDL is derived from VLDL. In the rat, it appears that most of the B apoprotein in the Sf 0-5 range, which contains 65% of the total LDL B apoprotein, enters the plasma independently of VLDL secretion.  相似文献   

15.
16.
Previous analysis of amniotic fluid (AF) noted only the presence of high density lipoprotein (HDL). In this study AF lipoprotein profile was examined using gel filtration column chromatography and Ouchterlony gel diffusion. Unlike previous studies which showed only the presence of HDL, we found significant amounts of low density lipoprotein (LDL) and very low density lipoprotein (VLDL). AF-LDL and AF-VLDL were identified by reactions with anti-h-apolipoprotein AI and AII antiserum and anti-h-apolipoprotein B-antiserum, respectively. Furthermore, bulk of the cholesterol mass was carried in VLDL (53.6 +/- 7.7%) and LDL (32.5 +/- 4.3%) with minor amounts (13.9 +/- 1.3%) in HDL fraction. It is concluded that human AF contains all three lipoproteins with most of the cholesterol being carried in very low density lipoprotein fraction.  相似文献   

17.
The chicken oocyte receptor for low and very low density lipoproteins has been identified and characterized. Receptor activity present in octyl-beta-D-glucoside extracts of oocyte membranes was measured by a solid phase filtration assay, and the receptor was visualized by ligand blotting. The protein had an apparent Mr of 95,000 in sodium dodecyl sulfate-polyacrylamide gels under nonreducing conditions and exhibited high affinity for apolipoprotein B-containing lipoproteins, but not for high density lipoproteins or lipoproteins in which lysine residues had been reductively methylated. Binding of lipoproteins was sensitive to EDTA, suramin, and treatment with Pronase. In these aspects, the avian oocyte system was analogous to the mammalian low density lipoprotein receptor in somatic cells. Furthermore, a structural relationship between the mammalian and avian receptors was revealed by immunoblotting: polyclonal antibodies directed against the purified bovine low density lipoprotein receptor reacted selectively with the 95-kDa chicken receptor present in crude oocyte membrane extracts.  相似文献   

18.
Very low (VLDL) and low density lipoproteins (LDL) were isolated from plasma of patients with the E3/3 phenotype which were divided into three groups based on their plasma triglyceride content: low (TG<200 mg/dl, TG(l)), intermediate (200<300 mg/dl, TG(i)300 mg/dl, TG(h)). The protein density (PD) on the VLDL and LDL surface was calculated from lipoprotein composition and protein location was studied by tryptophan fluorescence quenching by I(-) anions at 25 degrees C and 40 degrees C. A comparison of the TG(h) with the TG(l) group revealed a significant (<0.05) increase of the PD parameter as much as 21% for VLDL, but not for LDL where this parameter did not change for any group; generally, PD(LDL) values were 3.2-3.8-fold lower than PD(VLDL). In accordance with this difference, the tryptophan accessibility f in VLDL vs. LDL was lower at both temperatures. There were temperature-induced changes of the f parameter in opposite directions for these lipoproteins. The difference in f value gradually decreased for VLDL in the direction TG(l)TG(i)TG(h) while for LDL there was a U-shaped dependence for these groups. The Stern-Volmer quenching constant K(S-V) which is sensitive to both temperature and viscosity, did not change for VLDL, but K(S-V)(LDL) was 2-3-fold higher for the TG(i) group compared to the other two. The efficiencies of VLDL and LDL binding to the LDL receptor (LDLr) in vitro were compared by solid-phase assay free of steric hindrance observed in cell binding. The maximal number of binding sites did not change for either type of particles and between groups. The association constant K(a) and apolipoprotein (apo) E/apoB mole ratio values all increased significantly for VLDL, but not for LDL, in comparison of the TG(i+h) with the TG(l) group. Based on VLDL and LDL concentrations in serum and on the affinity constant values obtained in an in vitro assay, VLDL concentrations corresponding to 50% inhibition of LDL binding (IC(50)) were calculated in an assumption of the competition of both ligands for LDLr in vivo; the mean values of IC(50) decreased 2-fold when plasma TG exceeded 200 mg/dl. The functional dependences of K(a)(VLDL), IC(50) and apoE content in VLDL (both fractional and absolute) and in serum on TG content in the whole concentration range studied were fitted to a saturation model. For all five parameters, the mean half-maximum values TG(1/2) were in the range 52-103 mg/dl. The efficiency of protein-protein interactions is suggested to differ in normolipidemic vs. HTG-VLDL and apoE content and/or protein density on VLDL surface may be the primary determinant(s) of the increased binding of HTG-VLDL to the LDL receptor. ApoCs may compete with apoE for the binding to the VLDL lipid surface as plasma triglyceride content increases. The possible competition of VLDL with LDL for the catabolism site(s) in vivo, when plasma TG increases, could explain the atherogenic action of TG-rich lipoproteins. Moreover, the 'dual action' hypothesis on anti-atherogenic action of apoE-containing high density lipoproteins (HDL) in vivo is suggested: besides the well-known effect of HDL as cholesteryl ester catabolic outway, the formation of a transient complex of apoE-containing discs appearing at the site of VLDL TG hydrolysis by lipoprotein lipase with VLDL particles proposed in our preceding paper promotes the efficient uptake of TG-rich particles; in hypertriglyceridemia due to the diminished HDL content this uptake seems to be impaired which results in the increased accumulation of the remnants of TG-rich particles. This explains the observed increase in cholesterol and triglyceride content in VLDL and LDL, respectively, due to the CETP-mediated exchange of cholesteryl ester and triglyceride molecules between these particles.  相似文献   

19.
In the rat, chylomicron remnants and very low density lipoprotein (VLDL) remnants are taken up into the liver by high affinity processes and appear to undergo degradation by lysosomes. The relationship of this catabolic process to the known pathways of uptake and degradation of low density lipoproteins (LDL) and the involvement of nonparenchymal cells are addressed in these studies. We have utilized both light and electron microscopic radioautography to determine whether the pathway of intracellular transport and catabolism resembles that established for LDL in hepatocytes. Radioiodinated plasma VLDL remnants and lymph chylomicron remnants were injected into femoral veins of rats and the livers were fixed by perfusion 3 to 30 minutes later. Quantitative light microscopic radioautography showed little or no accumulation of grains over Kupffer cells. Electromicroscopic radioautography confirmed these observations and, in addition, demonstrated that very few grains were associated with endothelial cells. The processing of the remnant particles closely resembled that of LDL. Following an initial association of grains with the parenchymal cell plasma membrane, frequently in regions in close proximity to clathrin-coated endocytic pits, the grains were found in endocytic vesicles just beneath the plasma membrane. By 15 minutes the grains were found over multivesicular bodies located in the Golgi-lysosome region of the cell. Thirty minutes after injection, radioautographic grains began to be associated with secondary lysosomes. These data indicate no significant role for nonparenchymal cells in the internalization and subsequent degradation of triglyceride-rich lipoproteins, and provide evidence that the processing of remnants as well as LDL follows the classical pathway of receptor-mediated endocytosis.  相似文献   

20.
The purpose of this study was to determine the effects of a fish oil concentrate (FOC) on the in vitro conversion of very low density lipoproteins (VLDL) to intermediate (IDL) and low density lipoproteins (LDL). Six hypertriglyceridemic patients were randomly allocated to receive either placebo (olive oil) or FOC (1 g/14 kg body weight/day) for 4 weeks in a crossover study with a 4-week washout period. The FOC provided 3 g of eicosapentaenoic + docosahexaenoic acid per 70 kg of body weight, and it lowered plasma triglyceride and VLDL cholesterol levels by 35% and 42%, respectively. Decreases in the largest particles (VLDL(1)) were primarily responsible, with no effect noted in smaller VLDL particles (VLDL(2) and VLDL(3)). The FOC increased LDL cholesterol levels by 25% (P < 0.06) but did not affect LDL particle size. VLDL(1) and VLDL(3) were incubated in vitro with human postheparin lipases. Although triglycerides from both types of VLDL were hydrolyzed to the same extent with both treatments, particles isolated during the FOC phase were more readily converted into IDL and LDL than were control particles. These data suggest that the marine omega3 fatty acids may enhance the propensity of VLDL to be converted to LDL, partly explaining the decreased VLDL and increased LDL levels in FOC-treated patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号