首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The doubling potential of several hundred clones derived from WI-38 and WI-26 cell cultures has been determined. Clones were isolated at various population doubling levels (PDLs) during the finite in vitro life-span of the mass (uncloned) cultures. In all cases, there was a large variation in population doubling potential (or life-span) among the clones isolated from a single mass culture. When clones were isolated from mass cultures which had undergone eight or nine population doublings, only about 50% of the clones were capable of more than eight population doublings. This percentage was further reduced when clones were isolated from mass cultures at higher PDLs. Mass cultures appear to be composed of two subpopulation classes: one with a low population doubling potential, and the other with a higher population doubling potential. Nevertheless, the highest doubling potential observed in clones isolated from any single culture was about the same as the doubling potential of the mass culture from which single cells were taken.  相似文献   

2.
For the present study, which was performed to find a reliable method suitable for determination of the cell kinetic parameters of a continuous cell line, use was made of the macrophage cell line J774.1. The doubling time of the cell population was approximately 27 h. The continuous labeling curve showed that all the cells divide and almost no quiescent cells occur. The cell-cycle time as determined from the curve of the labeled cells in mitosis, the course of the stathmokinetic index, and time-lapse videorecordings, was about 19 h. The discrepancy between the population doubling time and the cell-cycle time must be due to death and disintegration of cells during culture in vitro. The results indicate that the doubling time of a cell population is not a reliable parameter to determine the kinetics of a population of continuously proliferating cells and that determination of the course of the stathmokinetic index offers a rapid and simple method to establish the cell-cycle time reliably.  相似文献   

3.
The effect of serum on the growth properties of non-transformed Balb 3T3 A31 and SV40-transformed Balb 3T3 A31 was studied. The concentration of serum in the growth medium of non-transformed cells had little effect on the initial population doubling time, but did regulate the cell density at which the population became quiescent in G1. The doubling time of transformed cells, however, was increased significantly as the concentration of serum was decreased below 4%. This effect on the growth of transformed cells was seen at serum concentrations so low that non-transformed cells did not complete one population doubling. Flow microfluorometric analysis of these populations indicated that the primary effect of different serum concentrations on the non-transformed cells was to modulate the average residence time in G1, whereas, all the cell cycle phases of the transformed cells were affected by serum. At saturation densities, the non-transformed cells became quiescent in G1, but the transformed cells still traversed the cell cycle and their saturation density appeared to be a balance between cell production and cell death occurring primarily in the G1 phase of the cell cycle.  相似文献   

4.
The behavioral properties of cell attachment and division were characterized by direct observation of individual cells in the culture of murine fibroblasts. At the cell attachment stage in the culture for early 10 h, the extent of cell spreading, which was defined as a ratio of the projected area of each cell against its saturated value, had a relatively broad distribution at 0.25 h, and it shifted to a higher level with elapsed time up to 10 h with narrowing in the distribution. The critical value of the extent of cell spreading was determined to be 0.54 as a threshold at which a cell is assumed to complete its adhesion to culture surface. The ratio of the number of cells with the extent of cell spreading over 0.54 against the total number of examined cells fairly followed the profile of cell adhesion which was obtained by measuring the number of adherent cells on culture surface.

At the cell growth stage in the culture for 20–64 h, doubling time of cell population increased gradually as the culture progressed toward confluence. Generation times (or cell-dividing spans) of individual cells, however, did not show a discriminating dependency on cell concentration and culture time. To clarify the influence of local congestion on the cell division, the generation time was formulated as a function of the number of contact cells around each target cell. Applying the cell placement growth model to estimating the extent of contact inhibition, the reciprocal value of doubling time could be correlated with the average of reciprocal generation times, implying that the doubling time on a cell-population basis is explained by considering the variation in dividing spans of individual cells affected by local contact environment.  相似文献   


5.
Three clones (H7, D7, and C5) were established from single cells of a bovine lymphoblastoid cell line (IR.TPM.1) infected with macroschizonts of the protozoan parasite Theileria parva. The cloning efficiency using feeder layers was 0.3–0.4. The mean parasite size (the number of parasite nuclei per cell) was different in each clone and was correlated to the growth rate. The fast growing clone, C5 (population doubling time 24 hr), contained smaller (mean parasite nuclear number, 12) parasites than a slow growing clone, D7 (population doubling time, 73 hr; mean number of parasite nuclei per cell, 35.3). The third clone, H7, had an intermediate growth rate (population doubling time, 49 hr) and parasite size (mean nuclei number, 18.1). There was variation in the incidence of microschizonts among the clones but microschizont-free clones were not isolated. When the clones were subjected to 4.3 × 10?7M aminopterin, 20–25% of the cell population of clones H7 and C5 and the uncloned parent line lost their parasites in 4 days, while it took 7 days to reach a similar result (31% parasite-free cells) in clone D7. We were unable to isolate parasite-free clones from cells treated with aminopterin. Hydroxyurea (4 × 10?4M) inhibited the growth of clone C5, but the macroschizonts continued to proliferate, and the incidence of cells with microschizonts increased. The size profile analysis showed that most of the aminopterin-treated cells were 9.0 μm, the hydroxyurea-treated cells 14.7 μm, and the untreated cells 10.8 μm in diameter.  相似文献   

6.
Summay A new established cell line 79f7Dv3g, ofDrosophila virilis consisting initially of male and female cells and represented now, after 6 yr of cultivation, only by male cells is described. The population doubling time is 36 h at 25° C. The cell culture is also able to grow in serum-free media for an indefinite time without special selection and has a population doubling time of 2 d.  相似文献   

7.
细胞周期的测量是细胞增殖动力学的研究基础。通过添加30μmol·L-1氯化高铁血红素(Hemin)诱导人慢性髓系白血病K562细胞红系分化,利用5-溴脱氧尿嘧啶核苷(BrdU)与7-AAD双染的方法检测Hemin诱导的K562红系分化细胞对细胞周期各期比例的影响,未诱导的K562细胞周期各期比例作为对照,检测发现Hemin诱导的K562红系分化细胞对其细胞周期相对值无明显影响。应用BrdU间隔染色结合流式细胞术的方法,通过分析BrdU间隔染色后BrdU阳性细胞群的动态变化规律,从而推算出K562红系分化细胞的倍增时间及细胞周期各期时长。根据测量结果发现,未诱导的K562细胞总倍增时间约为20 h,与通过生长曲线公式法计算倍增时间的结果相符,Hemin诱导的K562细胞的细胞周期倍增时长约为23 h。Hemin诱导的K562红系分化细胞较未诱导的K562细胞倍增时间与各期时长无明显差异。因此,Hemin诱导K562细胞红系分化对其细胞周期绝对值及相对值均无明显影响。  相似文献   

8.
The growth kinetics and population doubling limits of chick embryonic fibroblasts, chondroblasts, and retinal pigment cells were compared. Chondroblasts were found to have a cumulative population doubling level (37 +/- 3 PDL) similar (p = 0.05) to that of control fibroblasts (42 +/- 2 PDL), in individual and pooled clones. While both cell types have similar doubling potential, the proportion of tritium-labeled nuclei decreases, and differs significantly as doubling level increases. This age-associated decline is due to an extension in the population doubling time. Direct cell-cycle analysis shows this increase to occur in the G1 phase. Furthermore, cartilage colonies maintain their phenotypic expression (metachromasia) throughout their lifespan under conditions of subcloning at sparse density. When fibroblasts derived from 15 day chick embryos are compared with fibroblasts from 10 day embryos (41 +/- 2 PDL) there is no significant difference (p = 0.05) in cumulative PDL or percent labeled nuclei, indicating that fibroblasts of different embryonic age have similar potential. The addition of hydrocortisone and insulin to the medium significantly shortens (25 +/- 2 PDL) the lifespan of 10 day chick fibroblasts. Kinetics of retinal pigment cells show a population doubling potential (29 +/- 1 PDL) different from fibroblasts and chondroblasts, suggesting that different cell types may not have similar limits on doubling potential when first determined in embryogenesis. Hydrocortisone and insulin have no effect on the growth kinetics or lifespan of retinal pigment cells in culture.  相似文献   

9.
The application of the exponential growth equation is the standard method employed in the quantitative analyses of mammalian cell proliferation in culture. This method is based on the implicit assumption that, within a cell population under study, all division events give rise to daughter cells that always divide. When a cell population does not adhere to this assumption, use of the exponential growth equation leads to errors in the determination of both population doubling time and cell generation time. We have derived a more general growth equation that defines cell growth in terms of the dividing fraction of daughter cells. This equation can account for population growth kinetics that derive from the generation of both dividing and non-dividing cells. As such, it provides a sensitive method for detecting non-exponential division dynamics. In addition, this equation can be used to determine when it is appropriate to use the standard exponential growth equation for the estimation of doubling time and generation time.  相似文献   

10.
11.
Friend erythroleukemic cells (FLC) can be induced to differentiate in vitro by addition of dimethylsulfoxide (DMSO). We have studied the kinetics of induction by measuring cell volume, volume coefficient of variation and cell doubling time. Two distinct volume changes (early and late) are observed after the addition of the inducing agent. The early change occurs after ten hours and consist of a 10-20% decrease in volume compared to an untreated control population. This shift persists for two days and its magnitude is proportional to both the concentration of DMSO and the number of differentiated cells seen on day 5. FLC lines which induce weakly or not all with DMSO exhibit a reduced or absent early volume shift. Inclusion of a local anaesthetic in the culture prevents the appearance of differentiated cells and also counteracts the early volume shift. The exact time of the early volume change is a function of cell growth rate and appears to be cell cycle related. Synchronized cell populations exposed to DMSO during G2 and S phase undergo one round of mitosis before expression of the volume change whereas cells in G2-M express the change only after a second mitosis. A later, more gradual decrease in volume is observed in those cultures which begin to produce hemoglobin. It occurs after approximately five doubling times and coincides with the first appearance of hemoglobin-containing cells. Volume distribution parameters indicate that only a proportion of the population becomes smaller in size.  相似文献   

12.
The in vitro growth of the MPC-11 myeloma cell line was inhibited when these cells were co-cultured with adherent cells from mouse bone marrow. This growth inhibition involved prolongation of the specific population doubling time of the MPC-11 cell line. Control cultures of MPC-11 cells exhibited an average doubling time of 14–15 hr, whereas in the presence of adherent layers the length of the doubling time was up to 28 hr. This prolongation in the doubling time did not depend on the duration of incubation, but on the relative proportions of tumour cells and adherent cells employed. MPC-11 cells seeded in relatively high starting cell concentrations partially overcame the growth inhibition. the inhibitory activity of adherent cells from the bone marrow did not appear to be due to production of soluble factor(s), since media conditioned by adherent cells did not affect cell growth. Moreover, in modified co-cultures in which MPC-11 cells grew physically separated from the adherent layers, only marginal growth inhibition activity was observed. the possibility that cell-to-cell interactions lead to the inhibition of growth of MPC-11 cells by adherent cells from the bone marrow, and the implications of these findings to the control of cell growth by the haemopoietic microenvironment, are discussed.  相似文献   

13.
Telomeres are associated with the nuclear matrix and are thought to be heterochromatic. We show here that in human cells the overexpression of green fluorescent protein-tagged heterochromatin protein 1 (GFP-HP1) or nontagged HP1 isoforms HP1(Hsalpha) or HP1(Hsbeta), but not HP1(Hsgamma), results in decreased association of a catalytic unit of telomerase (hTERT) with telomeres. However, reduction of the G overhangs and overall telomere sizes was found in cells overexpressing any of these three proteins. Cells overexpressing HP1(Hsalpha) or HP1(Hsbeta) also display a higher frequency of chromosome end-to-end associations and spontaneous chromosomal damage than the parental cells. None of these effects were observed in cells expressing mutants of GFP-DeltaHP1(Hsalpha), GFP-DeltaHP1(Hsbeta), or GFP-DeltaHP1(Hsgamma) that had their chromodomains deleted. An increase in the cell population doubling time and higher sensitivity to cell killing by ionizing radiation (IR) treatment was also observed for cells overexpressing HP1(Hsalpha) or HP1(Hsbeta). In contrast, cells expressing mutant GFP-DeltaHP1(Hsalpha) or GFP-DeltaHP1(Hsbeta) showed a decrease in population doubling time and decreased sensitivity to IR compared to the parental cells. The effects on cell doubling times were paralleled by effects on tumorigenicity in mice: overexpression of HP1(Hsalpha) or HP1(Hsbeta) suppressed tumorigenicity, whereas expression of mutant HP1(Hsalpha) or HP1(Hsbeta) did not. Collectively, the results show that human cells are exquisitely sensitive to the amount of HP1(Hsalpha) or HP1(Hsbeta) present, as their overexpression influences telomere stability, population doubling time, radioresistance, and tumorigenicity in a mouse xenograft model. In addition, the isoform-specific effects on telomeres reinforce the notion that telomeres are in a heterochromatinized state.  相似文献   

14.
SYNOPSIS.
The reproduction of Toxoplasma gondii RH-strain in vertebrate cells was studied in a controlled-environment culture system. The lag period before reproduction and the doubling time of individual parasites were determined using a least-squares linear regression method of analysis which does not artificially constrain the data. In the majority of cases, the time intercept of the linear regression line was either zero, implying the lack of a lag phase before reproduction, or negative, implying the parasite had completed part of its reproductive cycle before entering the host cell. The mean doubling time of T. gondii is 10.9 h in bovine embryo skeletal muscle cells and 8.3 h in HeLa cells. This difference is not significant at the 5% level. The population doubling times of mouse-derived parasites is best described by a gamma distribution.  相似文献   

15.
The reproduction of Toxoplasma gondii RH-strain in vertebrate cells was studied in a controlled-environment culture system. The lag period before reproduction and the doubling time of individual parasites were determined using a least-squares linear regression method of analysis which does not artificially constrain the data. In the majority of cases, the time intercept of the linear regression line was either zero, implying the lack of a lag phase before reproduction, or negative, implying the parasite had completed part of its reproductive cycle before entering the host cell. The mean doubling time of T. gondii is 10.9 h in bovine embryo skeletal muscle cells and 8.3 h in HeLa cells. This difference is not significant at the 5% level. The population doubling times of mouse-derived parasites is best described by a gamma distribution.  相似文献   

16.
Summary Growth hormone production by a rat pituitary tumor cell line (GH1) was measured during lag, exponential, and plateau phases of growth in different culture media. Growth hormone secretion was low during lag and early exponential phase; it increased late in the exponential phase and continued to increase during the plateau phase. This biphasic pattern of growth hormone production was observed in all media and sera utilized. Both the doubling time and growth hormone production were influenced by the choice of media and sera. In addition, the length of time in culture affected the growth fraction with passage level 40 GH1 cells having a 79% growth fraction, whereas the growth fraction of passage level 100 cells was 95%. Using the population doubling time as a criterion for a choice of medium, F-10 medium supplemented with 20% fetal bovine serum consistently yielded the most rapid doubling time (32 hr), whereas Dulbecco's MEM supplemented with 15% horse serum and 2.5% fetal bovine serum yielded the greatest plateau cell density. Growth hormone secretion and the population doubling times were directly related to culture conditions including length of time in culture, choice of tissue culture media, choice of sera, and the phase of cell growth (lag, exponential or plateau).  相似文献   

17.
We have analyzed the cell cycle parameters of interstitial cells in Hydra oligactis. Three subpopulations of cells with short, medium, and long cell cycles were identified. Short-cycle cells are stem cells; medium-cycle cells are precursors to nematocyte differentiation; long-cycle cells are precursors to gamete differentiation. We have also determined the effect of different cell densities on the population doubling time, cell cycle length, and cell size of interstitial cells. Our results indicate that decreasing the interstitial cell density from 0.35 to 0.1 interstitial cells/epithelial cell (1) shortens the population doubling time from 4 to 1.8 days, (2) increases the [3H]thymidine labeling index from 0.5 to 0.75 and shifts the nuclear DNA distribution from G2 to S phase cells, and (3) decreases the length of G2 in stem cells from 6 to 3 hr. The shortened cell cycle is correlated with a significant decrease in the size of interstitial stem cells. Coincident with the shortened cell cycle and increased growth rate there is an increase in stem cell self-renewal and a decrease in stem cell differentiation.  相似文献   

18.
Various methods have been proposed for determining the potential doubling times (Tpot) of mammalian cell populations by using flow cytometric techniques after labeling the cells with bromodeoxyuridine (BrdUrd). We show here that, in a well-defined in vitro system where multiple time measurements are possible, all the methods give similar results that are close to the true population doubling time. Of ultimate interest, however, is the accuracy of determination of Tpot from a single time point. In this paper we compare the accuracy and precision of the methods in making such determinations at different times after labeling. The relative movement (RM) of BrdUrd-labeled cells that have not divided at the time of assay allows for computation of the length of S phase (Ts). The precision of estimation of Ts was enhanced when a quantity, v (a function of the fraction of BrdUrd-labeled divided and the fraction of BrdUrd-labeled undivided cells), was used to estimate the initial intercept of RM. Furthermore, calculation of Tpot from the formula, Tpot = ln(2) Ts/v, gave values closest to the observed population doubling time. It is suggested that the use of RM with v be the analytical method of choice for the calculation of Tpot from single time-point observations, preferably made at times between the length of the G2 and M phases (TG2M) and Ts.  相似文献   

19.
General relationships between the distribution of cell doubling times and the growth pattern of an initially synchronized cell population are applied to the model proposed by Smith and Martin (1973) in which the mitotic cycle or "B" phase is preceded by a random-exit resting "A" state. Results show that culture synchronization decays so rapidly as to be virtually unobservable unless the time spent by a cell in the B phase is at least equal to that spent in the A state. If synchronization persists over several mitotic cycles, the growth pattern is determined to a much greater extent by variation in the duration of the B phase than by the probability of exit from the A state. Accordingly the growth pattern of a cell population, like the doubling time distribution which governs the pattern, is of limited usefulness in detecting the existence of a resting state.  相似文献   

20.
The kinetics of thymidine uptake in human peripheral lymphocytes stimulated by allogenic cells, antigen E (ragweed allergen) and a variety of mitogens can generally be divided into four consecutive phases. First, a lag period with no increase in thymidine uptake, then a short period of rapid change in uptake, followed by a log-linear growth period and finally a decay phase. In this report we examine in detail the characteristics of the third, log-linear growth phase. Since, as discussed in the preceding paper, thymidine uptake is proportional to the number of cells acumulating thymidine, we can calculate from the log-linear growth period an apparent doubling time. We show that for five different stimulating agents the cells reach a log-linear growth phase of varying length and that the doubling times show little variation. This invariance indicates that, despite possible variation in cell death and recruitment rates, the rate of proliferation is in all cases dominated by the generation time of human lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号