首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The construction of three lambda bacteriophages containing parts of the structural gene for threonyl-tRNA synthetase, thrS, and those for the two subunits of phenylalanyl-tRNA synthetases, pheS and pheT, is described. These phages were used as hybridization probes to measure the in vivo levels of mRNA specific to these three genes. Plasmid pB1 carries the three genes thrS, pheS, and pheT, and strains carrying the plasmid show enhanced levels of mRNA corresponding to these genes. Although the steady-state levels of threonyl-tRNA synthetase and phenylalanyl-tRNA synthetase produced by the presence of the plasmid differed by a factor of 10, their pulse-labeled mRNA levels were about the same. Mutant derivatives of pB1 were also analyzed. Firstly, a cis-acting insertion located before the structural genes for phenylalanyl-tRNA synthetase caused a major decrease in both pheS and pheT mRNA. Secondly, mutations affecting either structural gene pheS or pheT caused a reduction in the mRNA levels for both pheS and pheT. This observation suggests that autoregulation plays a role in the expression of phenylalanyl-tRNA synthetase.  相似文献   

2.
Summary Bacterial plasmids and chromosomes encode centromere-like partition loci that actively segregate DNA before cell division. The molecular mechanism behind DNA segregation in bacteria is largely unknown. Here we analyse the mechanism of partition-associated incompatibility for plasmid pB171, a phenotype associated with all known plasmid-encoded centromere loci. An R1 plasmid carrying par2 from plasmid pB171 was destabilized by the presence of an F plasmid carrying parC1, parC2 or the entire par2 locus of pB171. Strikingly, cytological double-labelling experiments revealed no evidence of long-lived pairing of plasmids. Instead, pure R1 and F foci were positioned along the length of the cell, and in a random order. Thus, our results raise the possibility that partition-mediated plasmid incompatibility is not caused by pairing of heterologous plasmids but instead by random positioning of pure plasmid clusters along the long axis of the cell. The strength of the incompatibility was correlated with the capability of the plasmids to compete for the mid-cell position.  相似文献   

3.
Accurate DNA partition at cell division is vital to all living organisms. In bacteria, this process can involve partition loci, which are found on both chromosomes and plasmids. The initial step in Escherichia coli plasmid R1 partition involves the formation of a partition complex between the DNA-binding protein ParR and its cognate centromere site parC on the DNA. The partition complex is recognized by a second partition protein, the actin-like ATPase ParM, which forms filaments required for the active bidirectional movement of DNA replicates. Here, we present the 2.8 A crystal structure of ParR from E. coli plasmid pB171. ParR forms a tight dimer resembling a large family of dimeric ribbon-helix-helix (RHH)2 site-specific DNA-binding proteins. Crystallographic and electron microscopic data further indicate that ParR dimers assemble into a helix structure with DNA-binding sites facing outward. Genetic and biochemical experiments support a structural arrangement in which the centromere-like parC DNA is wrapped around a ParR protein scaffold. This structure holds implications for how ParM polymerization drives active DNA transport during plasmid partition.  相似文献   

4.
DNA fragments coding for the N-terminal 185 amino acids (aa) and for the entire coding region of the adenovirus (Ad)12 E1b 58-kDa protein have been cloned in a prokaryotic expression vector. The N-terminal region of the 58-kDa viral protein (aa 21-205) is expressed as a beta-galactosidase (beta Gal) fusion protein encoded by plasmid pB58Ngal. Escherichia coli strains transformed with this plasmid synthesize a full-length fusion protein of 150-kDa and two truncated proteins: a 140-kDa protein containing aa 64-205 and a 120-kDa polypeptide containing aa 158-205 of the E1b 58-kDa protein. Antibodies raised against purified fusion proteins specifically immunoprecipitate the E1b 58-kDa protein from Ad12-infected and transformed cells. Bacteria transformed with plasmid pB58 carrying the entire E1b 58-kDa coding region (minus the first N-terminal 20 aa which are replaced by 4 aa of beta Gal) showed dramatically reduced growth properties after induction of 58K gene expression. We have not been able to detect substantial amounts of the 58-kDa protein in these cells. However, the viral 58-kDa polypeptide could be synthesized in vitro from plasmid pB58 in a DNA-dependent translation system from E. coli.  相似文献   

5.
A survey of infant fecal Bifidobacterium isolates for plasmid DNA revealed that a significant portion of the strains, 17.6%, carry small plasmids. The majority of plasmid-harboring strains belonged to the Bifidobacterium longum/infantis group. Most of the plasmids could be assigned into two groups based on their sizes and the restriction profiles. Three plasmids, pB44 (3.6 kb) from B. longum, pB80 (4.9 kb) from Bifidobacterium bifidum, and pB21a (5.2kb) from Bifidobacterium breve were sequenced. While the former two plasmids were found to be highly similar to previously characterized rolling-circle replicating pKJ36 and pKJ56, respectively, the third plasmid, pB21a, does not share significant nucleotide homology with known plasmids. However, it might be placed into the pCIBb1-like group of bifidobacterial rolling-plasmids based on the homology of its Rep protein and the overall molecular organization. Two sets of Escherichia coli-Bifidobacterium shuttle vectors constructed based on pB44 and pB80 replicons were capable of transforming B. bifidum and B. breve strains with efficiency up to 3x10(4)cfu/microg DNA. Additionally, an attempt was made to employ a broad host range conjugation element, RP4, in developing of E. coli-Bifidobacterium gene transfer system.  相似文献   

6.
Eubacteria and archaea contain a variety of actin-like proteins (ALPs) that form filaments with surprisingly diverse architectures, assembly dynamics, and cellular functions. Although there is much data supporting differences between ALP families, there is little data regarding conservation of structure and function within these families. We asked whether the filament architecture and biochemical properties of the best-understood prokaryotic actin, ParM from plasmid R1, are conserved in a divergent member of the ParM family from plasmid pB171. Previous work demonstrated that R1 ParM assembles into filaments that are structurally distinct from actin and the other characterized ALPs. They also display three biophysical properties thought to be essential for DNA segregation: 1) rapid spontaneous nucleation, 2) symmetrical elongation, and 3) dynamic instability. We used microscopic and biophysical techniques to compare and contrast the architecture and assembly of these related proteins. Despite being only 41% identical, R1 and pB171 ParMs polymerize into nearly identical filaments with similar assembly dynamics. Conservation of the core assembly properties argues for their importance in ParM-mediated DNA segregation and suggests that divergent DNA-segregating ALPs with different assembly properties operate via different mechanisms.  相似文献   

7.
The segrosome is the nucleoprotein complex that mediates accurate segregation of bacterial plasmids. The segrosome of plasmid TP228 comprises ParF and ParG proteins that assemble on the parH centromere. ParF, which exemplifies one clade of the ubiquitous ParA superfamily of segregation proteins, polymerizes extensively in response to ATP binding. Polymerization is modulated by the ParG centromere binding factor (CBF). The segrosomes of plasmids pTAR, pVT745 and pB171 include ParA homologues of the ParF subgroup, as well as diverse homodimeric CBFs with no primary sequence similarity to ParG, or each other. Centromere binding by these analogues is largely specific. Here, we establish that the ParF homologues of pTAR and pB171 filament modestly with ATP, and that nucleotide hydrolysis is not required for this polymerization, which is more prodigious when the cognate CBF is also present. By contrast, the ParF homologue of plasmid pVT745 did not respond appreciably to ATP alone, but polymerized extensively in the presence of both its cognate CBF and ATP. The co-factors also stimulated nucleotide-independent polymerization of cognate ParF proteins. Moreover, apart from the CBF of pTAR, the disparate ParG analogues promoted polymerization of non-cognate ParF proteins suggesting that filamentation of the ParF proteins is enhanced by a common mechanism. Like ParG, the co-factors may be modular, possessing a centromere-specific interaction domain linked to a flexible region containing determinants that promiscuously stimulate ParF polymerization. The CBFs appear to function as bacterial analogues of formins, microtubule-associated proteins or related ancillary factors that regulate eucaryotic cytoskeletal dynamics.  相似文献   

8.
The IncP-1beta plasmid pB8, which confers resistance to amoxicillin, spectinomycin, streptomycin, and sulfonamides, was previously isolated from a sewage treatment plant. It was found to possess abnormal conjugative transfer properties, i.e., transfer to Escherichia coli by conjugation or electroporation could not be detected. We showed in this study that plasmid pB8 is transferable to E. coli by conjugation, but only at low frequencies and under specific experimental conditions, a phenomenon that is very unusual for IncP-1 plasmids. Determination of the complete 57,198bp pB8 nucleotide sequence revealed that the backbone of the plasmid consists of a complete set of IncP-1beta-specific genes for replication initiation, conjugative plasmid transfer, stable inheritance, and plasmid control with an organisation identical to that of the prototype IncP-1beta plasmid R751. All of the minor differences in the pB8 backbone sequence compared to that of R751 were also found in other IncP-1beta plasmids known to transfer to and replicate in E. coli. Plasmids pB8 and R751 can be distinguished with respect to their accessory genetic elements. First, the pB8 region downstream of the replication initiation gene trfA contains two transposable elements one of which is similar to Tn5501. The latter transposon encodes a putative post-segregational-killing system and the small multidrug resistance (SMR) protein QacF, mediating quaternary ammonium compound resistance. The accessory genes in this region are not responsible for the poor plasmid transfer to E. coli since a pB8 deletion derivative devoid of all genes in that region showed the same conjugative transfer properties as pB8. A Tn5090/Tn402 derivative carrying a class 1 integron is located between the conjugative transfer modules. The Tn5090/Tn402 integration-sites are exactly identical on pB8 and R751 but in contrast to R751 the pB8 element carries the resistance gene cassettes oxa-2 for amoxicillin resistance and aadA4 for streptomycin/spectinomycin resistance, the integron-specific conserved segment consisting of the genes qacEDelta1, sul1, and orf5, and a truncated tni transposition module (tniAB). Although future work will have to determine the molecular basis for the poor transfer of pB8 to E. coli, our findings demonstrate that the host-range of typical IncP-1 plasmids may be less broad than expected.  相似文献   

9.
The ParG segregation protein (8.6 kDa) of multidrug resistance plasmid TP228 is a homodimeric DNA-binding factor. The ParG dimer consists of intertwined C-terminal domains that adopt a ribbon-helix-helix architecture and a pair of flexible, unstructured N-terminal tails. A variety of plasmids possess partition loci with similar organizations to that of TP228, but instead of ParG homologs, these plasmids specify a diversity of unrelated, but similarly sized, partition proteins. These include the proteobacterial pTAR, pVT745, and pB171 plasmids. The ParG analogs of these plasmids were characterized in parallel with the ParG homolog encoded by the pseudomonal plasmid pVS1. Like ParG, the four proteins are dimeric. No heterodimerization was detectable in vivo among the proteins nor with the prototypical ParG protein, suggesting that monomer-monomer interactions are specific among the five proteins. Nevertheless, as with ParG, the ParG analogs all possess significant amounts of unordered amino acid residues, potentially highlighting a common structural link among the proteins. Furthermore, the ParG analogs bind specifically to the DNA regions located upstream of their homologous parF-like genes. These nucleoprotein interactions are largely restricted to cognate protein-DNA pairs. The results reveal that the partition complexes of these and related plasmids have recruited disparate DNA-binding factors that provide a layer of specificity to the macromolecular interactions that mediate plasmid segregation.  相似文献   

10.
11.
Plasmid pB1 carries the genes for threonyl-tRNA synthetase, phenylalanyl-tRNA synthetase, and translation initiation factor IF3. Strains carrying this plasmid overproduce phenylalanyl-tRNA synthetase about 100-fold. Spontaneous mutant plasmids were obtained which no longer caused the overproduction of the enzyme. Three classes of mutations were found. (i) Deletion mutations were found, some of which had the interesting property of fusing different genes together, e.g., putting phenylalanyl-tRNA synthetase under the control of the threonyl-tRNA synthetase promoter. (ii) Insertion mutations were found; one insertion in particular was studied. This insertion is located in front of the structural gene for phenylalanyl-tRNA synthetase and is shown to interrupt a cis-acting regulatory region. (iii) Mutations that showed no major change in DNA structure were found. One of these mutations is apparently purely structural, as it produces a small subunit of phenylalanyl-tRNA synthetase with a reduced molecular weight. This protein is less stable than the wild-type enzyme. These mutations represent useful tools to investigate how the phenylalanyl-tRNA synthetase operon is regulated.  相似文献   

12.
E Faure  C Bagnara  A Belaich  J P Belaich 《Gene》1988,65(1):51-58
Two cellulase genes isolated from Clostridium cellulolyticum strain ATCC3519 were cloned in Escherichia coli using plasmid pACYC184. Plasmids pB52 and pB43 were isolated from the transformants producing carboxymethylcellulase (CMCase) and the two cloned CMCase-coding genes were found to be included in two EcoRI fragments of 5.7 kb and 2.6 kb, respectively. These two genes showed no homology. The CMCase-coding genes were found to be contained in a 1.8-kb KpnI-HindIII fragment and a 2.05-kb HindIII-PvuII fragment of the DNA donor strain. Expression of these genes in E. coli was found not to depend on their orientation in the cloning vector. Hybridization experiments between these two fragments and Clostridium thermocellum NCIB10682 DNA fragments carrying genes celA, celB, celC and celD were carried out and some homologies were detected.  相似文献   

13.
14.
15.
The par2 locus of Escherichia coli plasmid pB171 encodes oscillating ATPase ParA, DNA binding protein ParB and two cis-acting DNA regions to which ParB binds (parC1 and parC2). Three independent techniques were used to investigate the subcellular localization of plasmids carrying par2. In cells with a single plasmid focus, the focus located preferentially at mid-cell. In cells with two foci, these located at quarter-cell positions. In the absence of ParB and parC1/parC2, ParA-GFP formed stationary helices extending from one end of the nucleoid to the other. In the presence of ParB and parC1/parC2, ParA-GFP oscillated in spiral-shaped structures. Amino acid substitutions in ParA simultaneously abolished ParA spiral formation, oscillation and either plasmid localization or plasmid separation at mid-cell. Therefore, our results suggest that ParA spirals position plasmids at the middle of the bacterial nucleoid and subsequently separate them into daughter cells.  相似文献   

16.
Plasmid pB4 is a conjugative antibiotic resistance plasmid, originally isolated from a microbial community growing in activated sludge, by means of an exogenous isolation method with Pseudomonas sp. B13 as recipient. We have determined the complete nucleotide sequence of pB4. The plasmid is 79,370 bp long and contains at least 81 complete coding regions. A suite of coding regions predicted to be involved in plasmid replication, plasmid maintenance, and conjugative transfer revealed significant similarity to the IncP-1beta backbone of R751. Four resistance gene regions comprising mobile genetic elements are inserted in the IncP-1beta backbone of pB4. The modular 'gene load' of pB4 includes (1) the novel transposon Tn 5719 containing genes characteristic of chromate resistance determinants, (2) the transposon Tn 5393c carrying the widespread streptomycin resistance gene pair strA-strB, (3) the beta-lactam antibiotic resistance gene bla(NPS-1) flanked by highly conserved sequences characteristic of integrons, and (4) a tripartite antibiotic resistance determinant comprising an efflux protein of the resistance-nodulation-division (RND) family, a periplasmic membrane fusion protein (MFP), and an outer membrane factor (OMF). The components of the RND-MFP-OMF efflux system showed the highest similarity to the products of the mexCD-oprJ determinant from the Pseudomonas aeruginosa chromosome. Functional analysis of the cloned resistance region from pB4 in Pseudomonas sp. B13 indicated that the RND-MFP-OMF efflux system conferred high-level resistance to erythromycin and roxithromycin resistance on the host strain. This is the first example of an RND-MFP-OMF-type antibiotic resistance determinant to be found in a plasmid genome. The global genetic organization of pB4 implies that its gene load might be disseminated between bacteria in different habitats by the combined action of the conjugation apparatus and the mobility of its component elements.  相似文献   

17.
Although IncP-1 plasmids are important for horizontal gene transfer among bacteria, in particular antibiotic resistance spread, so far only three plasmids from the subgroup IncP-1α have been completely sequenced. In this study we doubled this number. The three IncP-1α plasmids pB5, pB11 and pSP21 were isolated from bacteria of two different sewage treatment plants and sequenced by a combination of next-generation and capillary sequencing technologies. A comparative analysis including the previously analysed IncP-1α plasmids RK2, pTB11 and pBS228 revealed a highly conserved plasmid backbone (at least 99.9% DNA sequence identity) comprising 54 core genes. The accessory elements of the plasmid pB5 constitute a class 1 integron interrupting the parC gene and an IS6100 copy inserted into the integron. In addition, the tetracycline resistance genes tetAR and the ISTB11-like element are located between the klc operon and the trfA-ssb operon. Plasmid pB11 is loaded with a Tn5053-like mercury resistance transposon between the parCBA and parDE operons and contains tetAR that are identical to those identified in plasmid pB5 and the insertion sequence ISSP21. Plasmid pSP21 harbours an ISPa7 element in a Tn402 transposon including a class 1 integron between the partitioning genes parCBA and parDE. The IS-element ISSP21 (99.89% DNA sequence identity to ISSP21 from pB11), inserted downstream of the tetR gene and a copy of ISTB11 (identical to ISTB11 on pTB11) inserted between the genes pncA and pinR. On all three plasmids the accessory genes are almost always located between the backbone modules confirming the importance of the backbone functions for plasmid maintenance. The striking backbone conservation among the six completely sequenced IncP-1α plasmids is in contrast to the much higher diversity within the IncP-1β subgroup.  相似文献   

18.
Aminoacyl-tRNA synthetases of bakers' yeast (Saccharomyces cerevisiae) were adsorbed to a phosphocellulose (P-cellulose) column, and those specific for tyrosine [EC 6.1.1.1], threonine [EC 6.1.1.3], valine [EC 6.1.1.9], and isoleucine [EC 6.1.1.5] were eluted with several specific tRNAs. Elutions of these synthetases were affected by ATP and/or MgCl2. The effects of ATP and MgCl2 differ with synthetases. Elutions of tyrosyl- and valyl-tRNA synthetases with their cognate tRNAs were more specific in the presence of MgCl2. Isoleucyl-tRNA synthetase was eluted with its cognate tRNA in the presence of both ATP and MgCl2. On the other hand, threonyl-tRNA synthetase was eluted in the absence of ATP and MgCl2 with unfractionated tRNA but not with some non-cognate tRNAs. This suggests that elution of threonyl-tRNA synthetase is highly specific. The present data on the effects of ATP or MgCl2 or both on this affinity elution will be useful for simple and rapid purification of the synthetases.  相似文献   

19.
20.
The division of the aminoacyl-tRNA synthetases in two classes is compared with a division of the amino acids in two classes, obtained from the AAIndex databank by a principal component analysis. The division of the enzymes in Classes I and II follows to a great extent a division in the chemical and biological properties of their cognate amino acids. Furthermore, the phylogenetic trees of Classes I and II enzymes are highly correlated with dendrograms obtained for their cognate amino acids by using the indices in the AAIndex database. We argue that the evolution of aminoacyl-tRNA synthetases was determined by the characteristics of their corresponding amino acids. We interpret these results considering models for the origin and evolution of the genetic code in which an initial version, containing fewer amino acids, was modified by the incorporation of new amino acids following duplication and divergence of previous synthetases and tRNA molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号