首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L S Saxe 《Biochemistry》1975,14(10):2058-2063
An in vitro system has been developed to test whether colicin E2 possesses DNase activity. Purified colicin E2 preparations introduced one single-strand scission in supercoiled lambda phage DNA. Glycerol gradient fractionation of colicin E2 supports the association of in vitro action with in vivo cell-killing activity. Colicin E2 preparations also attacked superhelical SV40 DNA yielding open circles and fragments and single-stranded fd DNA molecules causing one or more endonucleolytic breaks. The possible role of contaminating nucleases in the activity of colicin E2 preparations is discussed.  相似文献   

2.
A phage-plasmid hybrid was constructed for use as a recombinant DNA vector, allowing the propagation of cloned EcoRI restriction endonuclease fragments of about 2 X 10(6) to 11 X 10(6) daltons. The colicin E1 plasmid replicon was fused to the left arm of a lambdagt generalized transducing phage with a thermolabile repressor, yielding a genome which could be replicated either by phage lambda functions or via the colicin E1 plasmid replicon. At the nonpermissive temperature, phage functions were derepressed and phage growth occurred lytically. Alternatively, at the permissive temperature, lambda functions were repressed and the vector replicated as a covalently closed circular plasmid. The phage-plasmid hybrid vector could be maintained at a copy number determined by the colicin E1 plasmid replicon and was also sensitive to amplification after chloramphenicol treatment. An EcoRI fragment of Escherichia coli DNA encoding genes of the arabinose operon also was inserted into the central portion of the vector.  相似文献   

3.
Treatment of Escherichia coli K-12 infected by lambda CIts857 with colicin CA42-E2 resulted in partial inhibition of the infectious process. Uninfected bacteria were killed by colicin with a probability of about five times that with which similarly treated lambda-infected bacteria lose plaque-forming ability. The lambda deoxyribonucleic acid (DNA), when present in a bacterial cell either as the replicating DNA of infectious phage or as the nonreplicating DNA of superinfecting phage, was degraded to acid-soluble material after colicin treatment. Analysis of the intermediates of DNA breakdown has revealed that degradation of the DNA to acid-soluble material is preceded by endonucleolytic fragmentation of the chromosome at a limited number of sites. This is the same mechanism of degradation previously observed for E. coli DNA after colicin treatment.  相似文献   

4.
M Kobayashi  K Koike 《Gene》1979,6(2):123-136
Rat mtDNA has a molecular length of about 16 kilobase (kb) pairs and is cleaved into seven fragments by restriction endonuclease EcoRI. These fragments were cloned in Escherichia coli K-12 host using lambda gtWES.lambda B' (lambda gtWES.lambda B, for short, in this paper) as a vector. Recombinant DNAs containing one or a few fragments of the mtDNA were transfected to CaCl2-treated E. coli, and the plaques containing specific recombinant phages were selected. DNA amplified in the recombinanat phage lambda gt.mt was shown to contain the same restriction endonuclease cleavage sites as those found in the mtDNA. Present results permitted the DNA sequencing of any portion of the mitochondrial genome.  相似文献   

5.
A composite plasmid has been constructed in vitro from colicin E1 factor (mass of 4.2 megadaltons [Md]) and nontransmissible resistance factor RSF 1010 (mass, 5.5. Md) deoxyribonucleic acids (DNAs) by the sequential action of Escherichia coli endonuclease (RI (Eco RI) and T4 phage DNA ligase on the covalently closed circular forms of the constituents. The composite plasmid was selected and amplified in vivo by sequential transformation of E. coli C600 with the ligated mixture and selection of transformants in medium containing streptomycin plus colicin E1, followed by amplification in the presence of chloramphenicol and purification of the extracted plasmid by dye-buoyant density gradient centrifugation in ethidium bromide-cesium chloride solution. Treatment of the composite plasmid with Eco RI yielded two fragments with mobilities corresponding to the linear forms of the parental plasmids, whereas Serratia marscesens endonuclease R (SmaR), which introduces a single scission in the colicin E1 factor but not in RSF 1010, convErted the composite plasmid to a single linear molecule (mass, 9.7 Md). Sequential degradation of colicin E1 factor with Sma R and Eco RI produced two fragments with masses of 3.5 and 0.7 Md; sequential degradation of RSF 1010 produced only one fragment (due to the cleavage with Eco RI), and sequential degradation of the composite plasmid produced the expected three fragments--an RSF 1010 Eco RI linear and the two expected products from the colicin E1 factor moiety. The composite plasmid conferred on the host cell resistance to streptomycin, sulfonamides, and colicin E1, but colicin E1 itself was not synthesized. In contrast, colicin E1 was synthesized by cells containing simultaneously both colicin E1 factor and RSF 1010 as separate entities. In the presence of chloramphenicol, the composite plasmid continued to replicate for 6 h. whereas replication of RSF 1010 and chromosomal DNA stopped within 2 h. Continued replication in the presence of chloramphenicol suggests that the replicator of the colicin E1 factor is functional in the composite plasmid.  相似文献   

6.
Summary A general method has been developed for the deletion of restriction endonuclease sites in bacterial plasmid DNA. The procedure involves partial digestion of the covalently closed circular plasmid DNA with an appropriate restriction endonuclease under conditions which allow accumulation of unit-length linear DNA molecules, controlled digestion of the exposed 5 ends with the 5-exonuclease, and in vivo recircularization of the resulting linear DNA in a bacterial host cell. The method has been used for the deletion of one of the two EcoRI sites in the plasmid pML2 (colE1-Km). Two of the resulting plasmids, pCR1 and pCR11, have a single EcoRI cleavage site, but retain genetic determinants specifying resistance to colicin E1 and kanamycin, and thus may be useful as vectors for the cloning and amplification of DNA in bacteria.  相似文献   

7.
Summary Among mutants refractory to colicin E2 at low temperatures but sensitive at high temperatures (designated Ref-II), three strains are described which are also UV sensitive. Although colicin refractivity is temperature dependent UV sensitivity is expressed at all temperatures. Although the UV sensitive lesion appears to be similar in its effects to that in Rec (recombinationless) strains, mutants specifically isolated as Rec strains are in fact more sensitive to E2 than are wild type strains. It is suggested that E2 refractivity and UV sensitivity in the mutants probably reflects the phenotypic expression of distinct although linked genes. It is also suggested that the degradation of DNA stimulated by adsorption of E2 to wild type bacteria may be caused by the same enzyme(s) which causes enhanced breakdown of DNA in some rec mutants after UV irradiation.  相似文献   

8.
The mechanism of lambda phage-mediated transduction of hybrid colicin E1 DNAs of various lengths was studied, and factors influencing the formation of these transducing particles were investigated. The results were as follows: 1. The presence of a cohesive end site of lambda phage (coslambda) on colicin E1 DNA was essential for packaging of the DNA. 2. Packaging of colicin E1 DNAs, which carry coslambda with molecular sizes corresponding to 68% of that of lambda phage DNA, was observed in the absence of all known recombination functions of E. coli K-12 and of lambda phage. 3. Hybrid colicin E1 DNAs having coslambda with molecular sizes corresponding to 28% of that of lambda phage DNA were packaged within lambda phage particles as trimers; hybrid DNAs with coslambda of 40 and 47% of the length of lambda phage DNA were packaged as dimers; and those with molecular sizes of 68% of that of lambda phage DNA were packaged mostly as monomers. These results demonstrated that two factors are essential for the packaging of DNAs within lambda phage particles; the presence of coslambda on the DNA molecule and an appropriate size of DNA.  相似文献   

9.
The primary target of colicin E7 in sensitive bacteria are their DNA molecules. In agarose gel electrophoresis of lysates of cells treated with colicin E7, both chromosomal and plasmid DNA bands disappear, in direct relation to E7 concentration and to the duration of treatment. DNA degradation is followed by a cessation of DNA synthesis. In E7-immune bacteria, no damage to DNA due to colicin E7 occurs. The mode of action of colicin E7 thus appears to be equal to that of colicin E2. Also, colicin E8 causes a distinct damage to chromosomal and plasmid DNA in sensitive, but not in immune bacteria. None of the colicins E1, E3, E4, E5, E6 or E9 has any influence on bacterial DNA.  相似文献   

10.
Bacterial toxins commonly translocate cytotoxic enzymes into cells using channel-forming subunits or domains as conduits. Here we demonstrate that the small cytotoxic endonuclease domain from the bacterial toxin colicin E9 (E9 DNase) shows nonvoltage-gated, channel-forming activity in planar lipid bilayers that is linked to toxin translocation into cells. A disulfide bond engineered into the DNase abolished channel activity and colicin toxicity but left endonuclease activity unaffected; NMR experiments suggest decreased conformational flexibility as the likely reason for these alterations. Concomitant with the reduction of the disulfide bond is the restoration of conformational flexibility, DNase channel activity and colicin toxicity. Our data suggest that endonuclease domains of colicins may mediate their own translocation across the bacterial inner membrane through an intrinsic channel activity that is dependent on structural plasticity in the protein.  相似文献   

11.
12.
Summary After transfer from a mutagenized host, twenty one ColE2 plasmid mutants were isolated after screening 10,000 clones for abnormal colicin production. Analysis by SDS polyacrylamide slab gel electrophoresis of proteins synthesized after mitomycin C-induction of mutant cultures, indicates that all but two of the mutations are in the structural gene for colicin E2. Of these, nine produce fragments of colicin in both whole cells and minicells and some are suppressed by nonsense suppressors.Studies with a nonsense mutant producing only a small colicin E2 fragment (ColE2-421) suggest that colicin E2 is not involved in plasmid DNA replication, in the control of its own synthesis, or required for cell death when cells become committed to colicin production. The two plasmid mutants outside the colicin gene segregate plasmid-free cells at 33°, 37° and 43°. One segregates fairly rapidly (about 4% per generation) though the colicin-producing cells make normal amounts of colicin, whilst the other segregates more slowly and the colicin-producing cells make much reduced amounts of colicin.  相似文献   

13.
FtsK is a bacterial protein that translocates DNA in order to transport chromosomes within the cell. During translocation, DNA's double-helical structure might cause a relative rotation between FtsK and the DNA. We used a single-molecule technique to quantify this rotation by observing the supercoils induced into the DNA during translocation of an FtsK complex. We find that FtsK induces approximately 0.07 supercoils per DNA helical pitch traveled. This rate indicates that FtsK does not track along DNA's groove, but it is consistent with our previous estimate of FtsK's step size. We show that this rate of supercoil induction is markedly near to the ideal value that would minimize in vivo disturbance to the chromosomal supercoil density, suggesting an origin for the unusual rotational behavior of FtsK.  相似文献   

14.
The cytotoxic domain of the bacteriocin colicin E9 (the E9 DNase) is a nonspecific endonuclease that must traverse two membranes to reach its cellular target, bacterial DNA. Recent structural studies revealed that the active site of colicin DNases encompasses the HNH motif found in homing endonucleases, and bound within this motif a single transition metal ion (either Zn(2+) or Ni(2+)) the role of which is unknown. In the present work we find that neither Zn(2+) nor Ni(2+) is required for DNase activity, which instead requires Mg(2+) ions, but binding transition metals to the E9 DNase causes subtle changes to both secondary and tertiary structure. Spectroscopic, proteolytic, and calorimetric data show that, accompanying the binding of 1 eq of Zn(2+), Ni(2+), or Co(2+), the thermodynamic stability of the domain increased substantially, and that the equilibrium dissociation constant for Zn(2+) was less than or equal to nanomolar, while that for Co(2+) and Ni (2+) was micromolar. Our data demonstrate that the transition metal is not essential for colicin DNase activity but rather serves a structural role. We speculate that the HNH motif has been adapted for use by endonuclease colicins because of its involvement in DNA recognition and because removal of the bound metal ion destabilizes the DNase domain, a likely prerequisite for its translocation across bacterial membranes.  相似文献   

15.
When λ bacteriophages were treated with a photosensitizing agent, psoralen or khellin, and 360 nm light, monoadducts and interstrand crosslinks were produced in the phage DNA. The DNA from the treated phages was injected normally into Escherichia coli uvrA? (λ) cells and it was converted to the covalent circular form in yields similar to those obtained in experiments with undamaged λ phages. In excision-proficient host cells, however, there was a dose-dependent reduction in the yield of rapidly sedimenting molecules, and a corresponding increase in slow sedimenting material, the extent of this conversion corresponding to about one cut per two crosslinks. Presumably, the damaged λ DNA molecules were cut by the uvrA endonuclease of the host cell, but were not restored to the original covalent circular form.The presence of psoralen damage in λ phage DNA greatly increased the frequency of genetic exchanges in λ phage-prophage crosses in homoimmune lysogens (Lin et al., 1977). As genetic recombination is thought to depend on cutting and joining in DNA molecules, experiments were performed to test whether psoralen-damaged λ DNA would cause other λ DNA in the same cell to be cut. E. coli (λ) host cells were infected with 32P-labeled λ phages and incubated to permit the labeled DNA to form covalent circles. When these host cells were superinfected with untreated λ phages, there was no effect upon the circular DNA. When superinfected with λ phages that had been treated with psoralen and light, however, many of the covalent circular molecules were cut. The cutting of undamaged molecules in response to the damaged DNA was referred to as “cutting in trans”. It required the uvrA+ and recA+ host gene functions, but neither recB+ nor any phage gene functions. It occurred normally in non-lysogenic hosts treated with chloramphenicol before infection. Cutting in trans may be one of the steps in recA-controlled recombination between psoralen crosslinked phage λ DNA and its homologs.  相似文献   

16.
Colicin E1 protein was labeled with 125I to specific activities of up to 2 × 108 cpm/mg of protein and with no loss of the colicin biological activity. The labeled colicin bound to colicin E1-sensitive, tolerant, and immune E1-colicinogenic Escherichia coli. An E. coli mutant resistant to colicin E1 exhibited a much lower colicin-binding capacity. The average number of bound colicin molecules per sensitive cell increased as a function of the colicin concentration in the colicin cell interaction mixture and continued to increase even after loss of viability of the entire culture. Up to 2,400 colicin E1 molecules bound per cell, but saturation was not reached. Binding kinetics showed that maximum binding occurred within 2 to 5 min of colicin addition. Survival and binding assays indicated that one colicin killing unit corresponded to an average of about 100 colicin molecules bound per bacterial cell. This number, however, decreased to about 8 in more extensively washed cells. Trypsin digestion of the colicin-treated cells removed the majority of the cell-bound colicin, but in general provided little rescue from colicin killing. At low colicin concentrations, a linear relationship existed between survival and the number of trypsin-inaccessible colicin molecules. Under these circumstances and in agreement with single-hit kinetics, the relationship between the number of colicin killing units and the number of trypsin-inaccessible colicin molecules was close to 1. After trypsin digestion, cells that were nearly saturated with colicin retained about 200 trypsin-inaccessible colicin molecules per cell. The trypsin-inaccessible colicin might represent those colicin molecules that bound to the specific E colicin receptors of E. coli cells.  相似文献   

17.
Infection of nonlysogenic Escherichia coli CR34(S) (Thy(-)) with bacteriophage lambda C(I)857 resulted in the formation of twisted circular double-stranded phage deoxyribonucleic acid (DNA; species I). When such infected bacteria were incubated in the absence of thymine, there was a significant decrease in the amount of species I DNA after 60 min of incubation. A similar loss of species I lambda DNA during incubation in a thymine-deficient medium was also observed after infection of the endonuclease I-deficient strain, E. coli 1100(S) (Thy(-)). This destruction of twisted, circular lambda DNA in thymine-deprived cells did not occur in the presence of chloramphenicol nor in lysogenic E. coli CR34 carrying a noninducible lambda prophage. It is therefore concluded that the endonuclease which attacks this circular configuration of lambda DNA is newly synthesized after infection and is directed by the phage chromosome.  相似文献   

18.
A family of hybrid plasmids carrying the entire gal operon of E. coli and designated pgal was constructed in vitro. In the case of pgal 1 (mol. wt. 16.4 Md), a fragment cut by Bam HI endonuclease from lambda gal phage DNA (lambda D-J-gal-att-int) was joined to pMB9 and cloned in the gal-strain of E. coli, which was grown on selective media with galactose as a sole source of carbon. Plasmid pgal2 was derived from pgal 1 by elimination of the 1.1 Md fragment located between the two EcoRI sites and carrying the lambda att-int region and part of pMB9. To obtain pgal3, the 10.7 Md fragment of lambda DNA located between the two SmaI sites (lambda D-J and part of pMB9) in pgal2 was cut out and the resulting flush-end fragments were sealed by the T4DNA ligase. The mol. wt. of pgal3 containing one SmaI site amounted to 4.6 Md, while several pgal3 variants that had lost their SmaI site were still smaller. Plasmid pgal1 inhibited the growth of the gal- host cells, which effect could be overcome by the accompanying helper pMB9. The presence of pgal2 and pgal3 supported the growth and multiplication of gal- cells on selective media even without the helper plasmid. The total amount of pgal plasmid DNA per cell was constant and equalled 60--70 Md (4 copies of pgal1 or 15--16 copies of pgal3, ColE1 or pMB9). This might explain why the co-presence of pMB9 helper does alleviate the "harmful" effects of the plasmid pgal1 (which carries att-int genes), by reducing the copy number of the latter from four to one.  相似文献   

19.
A new class of colicin sensitivity mutants of Escherichia coli was isolated whose cell division was specifically inhibited by colicin E(2) without detectable degradation of deoxyribonucleic acid (DNA) at 30 C. The mutant could not form colonies in the presence of colicin E(2) but recovered colony-forming ability by trypsin treatment even after prolonged incubation with the colicin. Addition of colicin E(2) to the exponentially growing mutant inhibited cell division completely but did not induce degradation of DNA into cold acid-soluble materials nor any breakage of DNA strands. Synthesis of DNA in the mutant was not inhibited, and long filamentous cells with multiple nuclear bodies were formed by the action of colicin E(2). Degradation of ribosomal ribonucleic acid and development of prophage lambda, both of which were induced by colicin E(2) in the sensitive cells, did not occur in the mutant. At the elevated temperature, however, the mutant was found to undergo colicin-induced degradation of DNA. No differences in ultraviolet light nor drug sensitivities were observed in the mutant compared to the parent E. coli. The data suggested that colicin E(2) had a specific inhibitory effect on cell division of E. coli that was not a consequence of DNA degradation.  相似文献   

20.
We used site-specific recombination catalyzed by the bacteriophage lambda Int system to probe DNA structure and metabolism in vivo. In vitro, the complexity of catenated products was linearly proportional to substrate supercoil density. A system was developed that gave efficient, controlled Int recombination in Escherichia coli cells. From a comparison of the data obtained in vitro and in vivo, we conclude that Int recombination does have the same mechanism in vivo as it has in vitro, but that only 40% of the plasmid DNA linking deficit in E. coli cells may be in the interwound supercoil form demonstrated in vitro. We suggest that this is the effective level of supercoiling in vivo, because the remaining DNA is constrained in alternative forms by protein binding. The study of Int recombination in vivo also provides an assay for enzymes that decatenate circular molecules, such as those formed during DNA replication. We find that DNA gyrase is the principal decatenase in E. coli and that it acts spontaneously and rapidly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号