首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Toxoplasma gondii micronemal protein MIC1 is a lactose-binding lectin.   总被引:2,自引:0,他引:2  
Host cell invasion by Toxoplasma gondii is a multistep process with one of the first steps being the apical release of micronemal proteins that interact with host receptors. We demonstrate here that micronemal protein 1 (MIC1) is a lactose-binding lectin. MIC1 and MIC4 were recovered in the lactose-eluted (Lac(+)) fraction on affinity chromatography on immobilized lactose of the soluble antigen fraction from tachyzoites of the virulent RH strain. MIC1 and MIC4 were both identified by N-terminal microsequencing. MIC4 was also identified by sequencing cDNA clones isolated from an expression library following screening with mouse polyclonal anti-60/70 kDa (Lac(+) proteins) serum. This antiserum localized the Lac(+) proteins on the apical region of T. gondii tachyzoites by confocal microscopy. The Lac(+) fraction induced hemagglutination (mainly type A human erythrocytes), which was inhibited by beta-galactosides (3 mM lactose and 12 mM galactose) but not by up to 100 mM melibiose (alpha-galactoside), fucose, mannose, or glucose or 0.2 mg/ml heparin. The lectin activity of the Lac(+) preparation was attributed to MIC1, because blotted MIC1, but not native MIC4, bound human erythrocyte type A and fetuin. The copurification of MIC1 and MIC4 may have been due to their association, as reported by others. These data suggest that MIC1 may act through its lectin activity during T. gondii infection.  相似文献   

2.
Here we report the isolation and characterization of a type I vacuolar-type H(+)-pyrophosphatase (V-PPase), TgVP1, from an apicomplexan, Toxoplasma gondii, a parasitic protist that is particularly amenable to molecular and genetic manipulation. The 816-amino acid TgVP1 polypeptide is 50% sequence-identical (65% similar) to the prototypical type I V-PPase from Arabidopsis thaliana, AVP1, and contains all the sequence motifs characteristic of this pump category. Unlike AVP1 and other known type I enzymes, however, TgVP1 contains a 74-residue N-terminal extension encompassing a 42-residue N-terminal signal peptide sequence, sufficient for targeting proteins to the secretory pathway of T. gondii. Providing that the coding sequence for the entire N-terminal extension is omitted from the plasmid, transformation of Saccharomyces cerevisiae with plasmid-borne TgVP1 yields a stable and functional translation product that is competent in aminomethylenediphosphonate (AMDP)-inhibitable K(+)-activated pyrophosphate (PP(i)) hydrolysis and PP(i)-energized H(+) translocation. Immunofluorescence microscopy of both free and intracellular T. gondii tachyzoites using purified universal V-PPase polyclonal antibodies reveals a punctate apical distribution for the enzyme. Equivalent studies of the tachyzoites during host cell invasion, by contrast, disclose a transverse radial distribution in which the V-PPase is associated with a collar-like structure that migrates along the length of the parasite in synchrony with and in close apposition to the penetration furrow. Although treatment of T. gondii with AMDP concentrations as high as 100 microm had no discernible effect on the efficiency of host cell invasion and integration, concentrations commensurate with the I(50) for the inhibition of TgVP1 activity in vitro (0.9 microm) do inhibit cell division and elicit nuclear enlargement concomitant with the inflation and eventual disintegration of acidocalcisome-like vesicular structures. A dynamic association of TgVP1 with the host cell invasion apparatus is invoked, one in which the effects of inhibitory V-PPase substrate analogs are exerted after rather than during host cell invasion.  相似文献   

3.
Inorganic tripolyphosphate (PPP(i)) and pyrophosphate (PP(i)) were examined as potential phosphate donors for human deoxynucleoside kinase (dCK), deoxyguanosine kinase (dGK), cytosolic thymidine kinase (TK1), mitochondrial TK2, and the deoxynucleoside kinase (dNK) from Drosophila melanogaster. PPP(i) proved to be a good phosphate donor for dGK, as well as for dCK with dCyd, but not dAdo, as acceptor substrate, illustrating also the dependence of donor properties on acceptor. Products of phosphorylation were shown to be 5(')-phosphates. In striking contrast to ATP, the phosphorylation reaction follows strict Michaelis-Menten kinetics, with K(m) values of 74 and 92 microM for dCK and dGK, respectively, and V(max) values 40-50% that for ATP. With the other three enzymes, as well as for dCK with dAdo as acceptor, no, or only low levels (相似文献   

4.
H(+)-pyrophosphatase (H(+)-PPase), which pumps H(+) across membranes coupled with PP(i) hydrolysis, is found in most plants, and some parasitic protists, eubacteria and archaebacteria. We assayed a number of extracts derived from 145 marine invertebrates as to their inhibitory effect on plant vacuolar H(+)-PPase. Acylspermidine derivatives [RCONH(CH(2))(3)N(CH(3))(CH(2))(4)N(CH(3))(2)] from a soft coral (Sinularia sp.) inhibited the PPi-hydrolysis activity of purified H(+)-PPase and the PP(i)-dependent H(+) pump activity (half inhibition concentration, 1 micro M) of vacuolar membranes of mung bean. The apparent K(i) was determined to be 0.9 micro M. Acylspermidines did not affect the activity of vacuolar H(+)-ATPase, plasma membrane H(+)-ATPase, mitochondrial ATPase or cytosolic PPase. Acylspermidines inhibited the acidification of vacuoles in protoplasts, as found on monitoring by the acridine orange fluorescent method. These results indicate that acylspermidine derivatives represent new inhibitors of H(+)-PPase with relatively high specificity.  相似文献   

5.
Recent reports of toxoplasmosis in marine mammals raise concern that cold-blooded marine animals are a potential source of Toxoplasma gondii infection. To examine the transmissibility of T. gondii to fish, we observed the development of T. gondii tachyzoites inoculated into oviduct epithelial cells of goldfish (Carassius auratus) microscopically in vitro. Further, the survival period of tachyzoites inoculated into goldfish muscle was bioassayed in mice and through PCR analysis. In cell cultures at 37 C, both RH and Beverley strains of T. gondii tachyzoites had penetrated into cells at 6 hr post inoculation, and were multiplying. In cell cultures at 33 C, many tachyzoites of both strains attached to the host cells, but no intracellular tachyzoites were observed at 24 hr post inoculation. In the T. gondii inoculated goldfish kept at 33 C, tachyzoite DNA was detected in the inoculated region on day 3, but not on day 7. When inoculated goldfish were kept at 37 C, live tachyzoites were seen at the inoculation site on day 3, but not on day 7. These results suggest that T. gondii does not persist in fish.  相似文献   

6.
Competitive interactions between Neospora caninum and Toxoplasma gondii were studied because both species appear to have identical ecological niches in vitro. Tachyzoites of N. caninum (NC-1 isolate) and T. gondii (RH isolate) were compared in three in vitro studies: (1) rate of penetration of host cells; (2) generation time; and (3) competition between the two species when grown together in the same flask and allowed to compete for space. When tachyzoites of the two species were inoculated onto human foreskin fibroblasts, 3.24-times more N. caninum tachyzoites penetrated cells by 1 h p.i. At 3 h p.i., there were 2.87-times more N. caninum intracellular tachyzoites than T. gondii tachyzoites. The generation times for N. caninum (NC-1 isolate) and T. gondii (RH isolate) were approximately 14-15 h and 8-10 h, respectively. Before exponential growth occurred, both species displayed a lag period, which was 10-12 h for N. caninum and 8-10 h for T. gondii. To observe competition, equal numbers of tachyzoites of each species were mixed and inoculated into flasks of host cells, and the monolayers were allowed to proceed to >90% lysis before the next transfer. Competition was analysed for 31 days by labelling samples of each flask with a species-specific monoclonal antibody and determining the ratio of each species. In all trials, T. gondii outcompeted N. caninum. By 4 days p.i., 70% of the tachyzoites were T. gondii; this percentage increased to 97% by 23 days p.i. When the starting inoculum contained 75% N. caninum and 25% T. gondii tachyzoites, T. gondii was still competitively superior. When infected monolayers that were labelled with T. gondii-specific antibodies were examined, it was noted that both species can occupy and undergo endodyogeny in the same host simultaneously.  相似文献   

7.
The nature of the control of glycolytic flux is one of the central, as-yet-uncharacterized issues in cellular metabolism. We developed a molecular genetic tool that specifically induces ATP hydrolysis in living cells without interfering with other aspects of metabolism. Genes encoding the F(1) part of the membrane-bound (F(1)F(0)) H(+)-ATP synthase were expressed in steadily growing Escherichia coli cells, which lowered the intracellular [ATP]/[ADP] ratio. This resulted in a strong stimulation of the specific glycolytic flux concomitant with a smaller decrease in the growth rate of the cells. By optimizing additional ATP hydrolysis, we increased the flux through glycolysis to 1.7 times that of the wild-type flux. The results demonstrate why attempts in the past to increase the glycolytic flux through overexpression of glycolytic enzymes have been unsuccessful: the majority of flux control (>75%) resides not inside but outside the pathway, i.e., with the enzymes that hydrolyze ATP. These data further allowed us to answer the question of whether catabolic or anabolic reactions control the growth of E. coli. We show that the majority of the control of growth rate resides in the anabolic reactions, i.e., the cells are mostly "carbon" limited. Ways to increase the efficiency and productivity of industrial fermentation processes are discussed.  相似文献   

8.
The importance of CD8+ T cells in immunity against Toxoplasma gondii is now well recognized. The mechanism by which these CD8+ T cells are able to confer this immunity is not yet understood. To examine the Ag specificity of this response, immune splenocytes from mice immunized with p30, a major surface parasite Ag, were evaluated for their ability to lyse peritoneal macrophages infected with three different strains of T. gondii. Macrophages infected with either the RH or P wild-type strain tachyzoites were lysed at varying E:T ratios by nylon wool nonadherent immune splenocytes whereas macrophages infected with a p30-deficient mutant (B mutant) of the P strain were not. The gene encoding p30 for the wild type and B mutant were amplified by the polymerase chain reaction. This revealed a nonsense mutation in the B mutant such that its primary translation product is predicted to be about two-thirds the size of the wild-type p30 molecule. mAb depletion studies indicate that the cytotoxic effect of the immune splenocytes is mediated by the CD8+ T cell population. Peritoneal macrophages infected with the three different strains (RH, P wild type, B mutant) from mice genetically restricted were not lysed by the immune CD8+ effector cell population. A cloned line (C3) of p30 Ag-specific CD8+ T cells exhibited significant cytotoxicity against syngeneic peritoneal macrophages infected with either the RH or P strain tachyzoites. There was no macrophage lysis observed by these CD8+ effector cells of either syngeneic macrophages infected with the B mutant or nonsyngeneic macrophages infected with the three different tachyzoite strains.  相似文献   

9.
In most laboratories, Toxoplasma gondii is maintained in mice and is studied in vitro using nonlymphoid cell lines or primary mouse macrophages. In this study, three rapidly dividing mouse macrophage cell lines (J774 A.1, P388D1, RAW264.7) were evaluated for their suitability for studying the RH strain of T. gondii. For comparison, tachyzoites were also grown in two slowly dividing epithelial cell types: a rat lung cell line (L2) and a bovine turbinate cell line (BT). Various inocula of T. gondii were added to the above cells and tachyzoites were harvested from the culture supernatants after 2-8 days of infection. The mouse macrophage cell lines supported rapid growth of T. gondii RH allowing up to a 300-fold increase of the inoculum in 2-4 days. L2 and BT supported slower growth of T. gondii (10- to 90-fold increase of inoculum in 5 to 8 days) and, thus, may be more suitable for assessment of host cell-parasite interactions and drug activity. Toxoplasma gondii RH isolated from each of the cell cultures described were able to multiply in all cell types used. Protein profiles of whole tachyzoite isolated from mice or cell cultures and protein profiles of the corresponding soluble and membrane fractions of the intraphagosomal membrane network were similar as seen after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In mice, intraperitoneal injection of 10(6), 10(5), and 10(3) tachyzoites isolated from the cell cultures or from infected mice caused death after 4, 5, and 8 days, respectively, indicating that parasites grown in vitro retained virulence.  相似文献   

10.
Infection and immunity to toxoplasmosis induced by the RH strain of Toxoplasma gondii was compared in Sprague-Dawley (SD) and Wistar rats and in outbred Swiss Webster mice. All rats injected with up to 1,000,000 RH-strain tachyzoites remained clinically normal, whereas mice injected with only 1 live tachyzoite died of acute toxoplasmosis. Rats could be infected with 1 tachyzoite of the RH strain as shown by antibody development and by bioassay in mice. However, after 8 days, RH-strain organisms were recovered only inconsistently from SD and Wistar rat brains. Contrary to a report of sterile immunity to T. gondii infection in rats after immunization with live RH tachyzoites, we found infection immunity after challenge with the VEG strain. Toxoplasma gondii tissue cysts of the VEG strain could be recovered from most SD and Wistar rats, first injected with live RH-strain tachyzoites and then challenged with oocysts of the VEG strain. Our RH strain, and probably many others, passed for 50+ yr as tachyzoites has lost not only the capacity to form oocysts, but also shows a marked reduction or absence of tissue cyst (bradyzoites) formation.  相似文献   

11.
The mouse-virulent RH strain of Toxoplasma gondii is generally considered to have lost its cyst-forming capacity, and conversion of RH tachyzoites into cysts in non-immune mice has previously been shown exclusively following early treatment with sulfadiazine (SDZ). We here describe the development of tissue cysts in mice infected with RH strain parasites and treated with atovaquone (ATO) combined with pyrrolidine dithiocarbamate (PDTC). Groups of Swiss-Webster mice infected intraperitoneally (i.p.) with 10(2) RH tachyzoites were treated with 5, 25 and 100 mg of ATO/kg per day alone or combined with PDTC at 250 mg/kg per day from day 1 postinfection (p.i.) for 14 days. A total of 19 mice survived the 6-week observation period. Of these, brain cysts were recovered in nine (47%), with burdens ranging from 50 to 3120 (mean +/- S.D. = 622 +/- 963). All cyst-harboring mice had high specific IgG antibody levels (1:10,240-1:40,960, corresponding to 500-2000 IU/ml), as did one mouse in which cysts were not demonstrated, which was therefore included in the group of mice with residual infection. Bioassay performed to test the infectivity of these cysts produced acute lethal toxoplasmosis following i.p. inoculation in all instances (100%), and importantly, following peroral inoculation in four (29%). The recovered tachyzoites were highly infectious. In addition, significantly elevated interferon gamma (IFN-gamma) in the treated mice which developed residual infection compared with any group of infection-free (treated or subinoculated) mice, indicates immunological control of the parasite in the latent form. In conclusion, early treatment of mice infected with T. gondii RH tachyzoites with ATO and PDTC induces conversion into tissue cysts, thus providing a new model for studying the mechanism(s) of T. gondii stage conversion.  相似文献   

12.
Migration and maturation of human dendritic cells derived from CD34+ progenitor cells (DC) infected by Toxoplasma gondii were studied in an in vitro model. We demonstrated that infection with virulent type I strains RH and ENT or type II low virulent strains PRU and CAL induced DC migration towards MIP-3beta. However, type II strains induced a higher percentage of migrating cells than that induced by type I strains or positive controls (chemical allergen or lipopolysaccharides). Type II strains produced soluble factors responsible of the high migration whereas heat killed tachyzoites did not induced a migration higher than positive controls. We also demonstrated that infection by virulent strains and not by type II stains or heat killed tachyzoites triggers DC maturation. A soluble factor released by type II strains was responsible of the absence of DC maturation. Taken together, these results demonstrated that the interference of T. gondii in the behaviour of DC functions is related to the strain types and can be supported by secretion of soluble factors by the parasite.  相似文献   

13.
Suggestions by Calvin about a role of inorganic pyrophosphate (PPi) in early photosynthesis and by Lipmann that PPi may have been the original energy-rich phosphate donor in biological energy conversion, were followed in the mid-1960s by experimental results with isolated chromatophore membranes from the purple photosynthetic bacterium Rhodospirillum rubrum. PPi was shown to be hydrolysed in an uncoupler stimulated reaction by a membrane-bound inorganic pyrophosphatase (PPase), to be formed at the expense of light energy in photophosphorylation and to be utilized as an energy donor for various energy-requiring reactions, as a first known alternative to ATP. This direct link between PPi and photosynthesis led to increasing attention concerning the role of PPi in both early and present biological energy transfer. In the 1970s, the PPase was shown to be a proton pump and to be present also in higher plants. In the 1990s, sequences of H(+)-PPase genes were obtained from plants, protists, bacteria and archaea and two classes of H(+)-PPases differing in K(+) sensitivity were established. Over 200 H(+)-PPase sequences have now been determined. Recent biochemical and biophysical results have led to new progress and questions regarding the H(+)-PPase family, as well as the families of soluble PPases and the inorganic polyphosphatases, which hydrolyse inorganic linear high-molecular-weight polyphosphates (HMW-polyP). Here we will focus attention on the H(+)-PPases, their evolution and putative active site motifs, response to monovalent cations, genetic regulation and some very recent results, based on new methods for obtaining large quantities of purified protein, about their tertiary and quaternary structures.  相似文献   

14.
We describe here a new tissue culture method for prolonged laboratory maintenance of tachyzoites of the highly virulent RH strain of Toxoplasma gondii. Using a rapidly proliferating murine tumor cell line (YAC-1), the method described is easy to perform and is as or more efficient (both in terms of yield and cost) than other traditional methods for maintenance of the parasite. Furthermore, upon prolonged maintenance (greater than 160 days) in YAC-1 tissue culture, the pathogenicity of the parasite, as well as its capacity to elicit an immune response, are comparable to that of organisms maintained in mice. We conclude therefore, that the method described herein is a suitable alternative to the traditional method of maintenance of virulent RH strain T. gondii tachyzoites.  相似文献   

15.
We describe a believed-novel procedure for translating metabolite profiles (metabolome) into the set of metabolic fluxes (fluxome) from which they originated. Methodologically, computational modeling is integrated with an analytical platform comprising linear optimization, continuation and dynamic analyses, and metabolic control. The procedure was tested with metabolite profiles obtained from ex vivo mice Langendorff-heart preparations perfused with glucose. The metabolic profiles were analyzed using a detailed kinetic model of the glucose catabolic pathways including glycolysis, pentose phosphate (PP), glycogenolysis, and polyols to translate the glucose metabolome of the heart into the fluxome. After optimization, the ability of the model to simulate the initial metabolite profile was confirmed, and metabolic fluxes as well as the structure of control and regulation of the glucose catabolic network could be calculated. We show that the step catalyzed by phosphofructokinase together with ATP demand and glycogenolysis exert the highest control on the glycolytic flux. The negative flux control exerted by phosphofructokinase on the PP and polyol pathways revealed that the extent of glycolytic flux directly affects flux redirection through these pathways, i.e., the higher the glycolytic flux the lower the PP and polyols. This believed-novel methodological approach represents a step forward that may help in designing therapeutic strategies targeted to diagnose, prevent, and treat metabolic diseases.  相似文献   

16.
The fluoride ion is a potent and specific inhibitor of cytoplasmic pyrophosphatase (PPase). Fluoride action on yeast PPase during PP(i) hydrolysis involves rapid and slow phases, the latter being only slowly reversible [Smirnova, I. N., and Baykov, A. A. (1983) Biokhimiya 48, 1643-1653]. A similar behavior is observed during yeast PPase catalyzed PP(i) synthesis. The amount of enzyme.PP(i) complex formed from solution P(i) exhibits a rapid drop upon addition of fluoride, followed, at pH 7.2, by a slow increase to nearly 100% of the total enzyme. The slow reaction results in enzyme inactivation, which is not immediately reversed by dilution. These data show that fluoride binds to an enzyme.PP(i) intermediate during the slow phase and to an enzyme.P(i) intermediate during the rapid phase of the inhibition. In Escherichia coli PPase, the enzyme.PP(i) intermediate binds F(-) rapidly, explaining the lack of time dependence in the inhibition of this enzyme. The enzyme.PP(i) intermediate formed during PP(i) hydrolysis binds fluoride much faster (yeast PPase) or tighter (E. coli PPase) than the similar complex existing at equilibrium with P(i). It is concluded that PPase catalysis involves two enzyme.PP(i) intermediates, of which only one (immediately following PP(i) addition and predominating at acidic pH) can bind fluoride. Simulation experiments have indicated that interconversion of the enzyme.PP(i) intermediates is a partially rate-limiting step in the direction of hydrolysis and an exclusively rate-limiting step in the direction of synthesis.  相似文献   

17.
SAG-1, one of the major surface proteins of Toxoplasma gondii, has been reported to play an important role in immune and pathogenic mechanisms of the parasites but its exact function is still unclear. We investigated the time courses of T. gondii infection in B6C3F1 transgenic mice carrying the SAG-1 gene. SAG-1 transgenic mice were infected intraperitoneally with a high virulent RH strain or a low virulent Beverley strain of T. gondii. When infected with RH strain tachyzoites, no significant differences in time courses of survivals between SAG-1 transgenic and wild-type mice were observed. Both groups succumbed to an acute infection within 8 days after infection. However, a lower survival rate (20%) was observed in SAG-1 transgenic mice than in wild-type (80%), when infected with Beverley strain cysts. This result indicates that SAG-1 transgenic mice are more susceptible to T. gondii infection as compared with their wild-type counterpart. ELISA using recombinant SAG-1 protein indicates that SAG-1 transgenic mice do not produce antibodies to the SAG-1 molecule. These findings may provide a critical tool for analysing the molecular mechanisms of pathogenesis and host immune responses during toxoplasmosis.  相似文献   

18.
Membrane-bound pyrophosphatase of the hyperthermophilic bacterium Thermotoga maritima(Tm-PPase), a homologue of H(+)-translocating pyrophosphatase, was expressed in Escherichia coli and isolated as inner membrane vesicles. In contrast to all previously studied H(+)-PPases, both native and recombinant Tm-PPases exhibited an absolute requirement for Na(+) but displayed the highest activity in the presence of millimolar levels of both Na(+) and K(+). Detergent-solubilized recombinant Tm-PPase was thermostable and retained the monovalent cation requirements of the membrane-embedded enzyme. Steady-state kinetic analysis of pyrophosphate hydrolysis by the wild-type enzyme suggested that two Na(+) binding sites and one K(+) binding site are involved in enzyme activation. The affinity of the site that binds Na(+) first is increased with increasing K(+) concentration. In contrast, only one Na(+) binding site (K(+)-dependent) and one K(+) binding site were involved in activation of the Asp(703) --> Asn variant. Thus, Asp(703) may form part of the K(+)-independent Na(+) binding site. Unlike all other membrane and soluble PPases, Tm-PPase did not catalyze oxygen exchange between phosphate and water. However, solubilized Tm-PPase exhibited low but measurable PP(i)-synthesizing activity, which also required Na(+) but was inhibited by K(+). These results demonstrate that T. maritima PPase belongs to a previously unknown subfamily of Na(+)-dependent H(+)-PPase homologues and may be an analogue of Na(+),K(+)-ATPase.  相似文献   

19.
CBS (cystathionine beta-synthase) domains are found in proteins from all kingdoms of life, and point mutations in these domains are responsible for a variety of hereditary diseases in humans; however, the functions of CBS domains are not well understood. In the present study, we cloned, expressed in Escherichia coli, and characterized a family II PPase (inorganic pyrophosphatase) from Moorella thermoacetica (mtCBS-PPase) that has a pair of tandem 60-amino-acid CBS domains within its N-terminal domain. Because mtCBS-PPase is a dimer and requires transition metal ions (Co2+ or Mn2+) for activity, it resembles common family II PPases, which lack CBS domains. The mtCBS-PPase, however, has lower activity than common family II PPases, is potently inhibited by ADP and AMP, and is activated up to 1.6-fold by ATP. Inhibition by AMP is competitive, whereas inhibition by ADP and activation by ATP are both of mixed types. The nucleotides are effective at nanomolar (ADP) or micromolar concentrations (AMP and ATP) and appear to compete for the same site on the enzyme. The nucleotide-binding affinities are thus 100-10000-fold higher than for other CBS-domain-containing proteins. Interestingly, genes encoding CBS-PPase occur most frequently in bacteria that have a membrane-bound H+-translocating PPase with a comparable PP(i)-hydrolysing activity. Our results suggest that soluble nucleotide-regulated PPases act as amplifiers of metabolism in bacteria by enhancing or suppressing ATP production and biosynthetic reactions at high and low [ATP]/([AMP]+[ADP]) ratios respectively.  相似文献   

20.
Previously we demonstrated that efficient coupling between cellular sites of ATP production and ATP utilization, required for optimal muscle performance, is mainly mediated by the combined activities of creatine kinase (CK)- and adenylate kinase (AK)-catalyzed phosphotransfer reactions. Herein, we show that simultaneous disruption of the genes for the cytosolic M-CK- and AK1 isoenzymes compromises intracellular energetic communication and severely reduces the cellular capability to maintain total ATP turnover under muscle functional load. M-CK/AK1 (MAK=/=) mutant skeletal muscle displayed aberrant ATP/ADP, ADP/AMP and ATP/GTP ratios, reduced intracellular phosphotransfer communication, and increased ATP supply capacity as assessed by 18O labeling of [Pi] and [ATP]. An analysis of actomyosin complexes in vitro demonstrated that one of the consequences of M-CK and AK1 deficiency is hampered phosphoryl delivery to the actomyosin ATPase, resulting in a loss of contractile performance. These results suggest that MAK=/= muscles are energetically less efficient than wild-type muscles, but an apparent compensatory redistribution of high-energy phosphoryl flux through glycolytic and guanylate phosphotransfer pathways limited the overall energetic deficit. Thus, this study suggests a coordinated network of complementary enzymatic pathways that serve in the maintenance of energetic homeostasis and physiological efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号