首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to investigate the role of endothelial nitric-oxide synthase (eNOS), cAMP, and p38 MAPK in tumor necrosis factor-alpha (TNF-alpha) expression induced by lipopolysaccharide (LPS). LPS dose- and time-dependently induced phosphorylation of p38 MAPK and TNF-alpha expression in neonatal mouse cardiomyocytes. TNF-alpha expression was preceded by p38 MAPK phosphorylation, and selective inhibition of p38 MAPK abrogated LPS-induced TNF-alpha expression. Deficiency in eNOS decreased basal and LPS-stimulated TNF-alpha expression in cardiomyocytes. NOS inhibitor l-NAME attenuated LPS-induced p38 MAPK phosphorylation and TNF-alpha production in wild-type cardiomyocytes, whereas NO donor 2,2'-(hydroxynitrosohydrazono)bis-ethanamine (DETA-NO) (2 microm) or overexpression of eNOS by adenoviral gene transfer restored the response of eNOS(-/-) cardiomyocytes to LPS. These effects of NO were mediated through cAMP-dependent pathway based on the following facts. First, deficiency in eNOS decreased basal levels of intracellular cAMP, and DETA-NO elevated intracellular cAMP levels in eNOS(-/-) cardiomyocytes. Second, a cAMP analogue 8-Br-cAMP mimicked the effect of NO in eNOS(-/-) cardiomyocytes. Third, either inhibition of cAMP or cAMP-dependent protein kinase attenuated LPS-stimulated p38 MAPK phosphorylation and TNF-alpha production in wild-type cardiomyocytes. In conclusion, eNOS enhances LPS-stimulated TNF-alpha expression in cardiomyocytes. Activation of p38 MAPK is essential in LPS-stimulated TNF-alpha expression. Moreover, the effects of NO on LPS-stimulated TNF-alpha expression are mediated through cAMP/cAMP-dependent protein kinase-dependent p38 MAPK pathway in neonatal cardiomyocytes.  相似文献   

2.
p38 MAPK信号传导通路   总被引:21,自引:0,他引:21  
姜勇  韩家淮 《生命科学》1999,11(3):102-106
丝裂原活化蛋白激酶(mitogen-activatedporoteinkinase,MAPK)介导了生长、发育,分裂,死亡,以及细胞间的功能同步等多种细胞生理功能,在哺乳动物细胞中已发现和克隆了ERK、JNK/SAPK,ERK5/BMK1和p38/RK四个MAPK亚族,这些新的MAPK介导了物理,化学反激,细菌产物,炎性细胞因子等多种刺激引起的细胞反应,p38亚族至少包括p38(α),p38β,p  相似文献   

3.
The vasculature of various organs is a targeted by the environmental toxin, cadmium (Cd). However, mechanisms leading to pathological conditions are poorly understood. In the present study, we examined the effect of cadmium chloride (CdCl2) on human umbilical vein endothelial cells (HUVECs). At 4 μM, CdCl2 induced a hyper-permeability defect in HUVECs, but not the inhibition of cell growth up to 24 h. This effect of CdCl2 was dependent on the activation of the p38 mitogen-activated protein kinase (MAPK) pathway. The p38 MAPK inhibitor SB203850 suppressed the CdCl2-induced alteration in trans-endothelial electrical resistance in HUVEC monolayers, a model measurement of vascular endothelial barrier integrity. SB203850 also inhibited the Cd-induced membrane dissociation of vascular endothelial (VE) cadherin and β-catenin, the important components of the adherens junctional complex. In addition, SB203850 reduces the Cd-induced expression and secretion of tumor necrosis factor α (TNF-α). Taken together, our findings suggest that Cd induces vascular hyper-permeability and disruption of endothelial barrier integrity through stimulation of p38 MAPK signaling.  相似文献   

4.
Diarrhea is a common manifestation of gastrointestinal disorders. Diarrhea-induced losses of fluid and electrolyte could lead to dehydration and electrolyte imbalances, resulting in significant morbidity and mortality, especially in children living in developing countries. Somatostatin, a peptide hormone secreted by D-cells, plays an important role in regulating motility and intestinal Na(+) absorption. Although octreotide, a somatostatin analog, is used to treat diarrhea, its mechanisms of action are unclear. Here we showed that octreotide increased brush-border membrane Na(+)/H(+) exchanger 8 (NHE8) expression in the small intestine to the exclusion of other NHEs that participate in Na(+) absorption. The same effect also occurred in human intestinal cells (Caco-2). We found that the increase of NHE8 expression by somatostatin required p38 mitogen-activated protein kinase (MAPK) activation. Furthermore, the somatostatin receptor SSTR2 antagonist CYN154806 could abolish somatostatin-induced NHE8 expression and p38 MAPK phosphorylation. Thus our data provided the first concrete evidence indicating that somatostatin stimulates intestinal Na(+) absorption by increasing intestinal NHE8 expression through the SSTR2-p38 MAPK pathway.  相似文献   

5.
Zoledronate (ZOL) were found to inhibit bone resorption in an animal model of diabetes, high glucose concentrations have been shown to decreased the osteogenesis-related gene expression. But the molecular mechanism by which high glucose levels affect osteoblasts and the effects of ZOL on osteoblast differentiation in a high-glucose environment remain unclear. Therefore, we aimed to investigate the effect of ZOL on osteoblast differentiation in a high-glucose environment and determine the responsible mechanism. Cell proliferation was detected by MTT assay, and cell differentiation was evaluated by immunofluorescence staining for alkaline phosphatase expression, alizarin red staining, cytoskeletal arrangement, and actin fiber formation. Real-time PCR and western blot analyses were performed to detect the mRNA and protein expression of p38MAPK, phosphorylated (p)-p38MAPK, CREB, p-CREB, collagen (COL) I, osteoprotegerin (OPG), and RANKL. The results showed that cell proliferation activity did not differ among the groups. But high glucose inhibited osteoblast differentiation; actin fiber formation; and p38MAPK, p-p38MAPK, CREB, p-CREB, COL I, and OPG expression, while promoting RANKL expression. However, we found that treatment with ZOL reversed these effects of high glucose. And further addition of a p38MAPK inhibitor led to inhibition of osteoblast differentiation and actin fiber formation, and lower p38MAPK, p-p38MAPK, CREB, p-CREB, COL I, and OPG expression than in the high glucose +ZOL group with higher RANKL expression than in the high glucose +ZOL group. Collectively, this study demonstrates that high glucose inhibits the differentiation of osteoblasts, and ZOL could partly overcome these effects by regulating p38MAPK pathway activity.  相似文献   

6.
Angiogenesis and apoptosis are reciprocal processes in endothelial cells. Bcl-2, an anti-apoptotic protein, has been found to have angiogenic activities. The purpose of this study was to determine the role of Bcl-2 in hypoxia-induced angiogenesis in endothelial cells and to investigate the underlying mechanisms. Human aortic endothelial cells (HAECs) were exposed to hypoxia followed by reoxygenation. Myocardial ischemia and reperfusion mouse model was used and Bcl-2 expression was assessed. Bcl-2 expression increased in a time-dependent manner in response to hypoxia from 2 to 72 h. Peak expression occurred at 12 h (3- to 4-fold, p < 0.05). p38 inhibitor (SB203580) blocked hypoxia-induced Bcl-2 expression, whereas PKC, ERK1/2 and PI3K inhibitors did not. Knockdown of Bcl-2 resulted in decreased HAECs’ proliferation and migration. Over-expression of Bcl-2 increased HAECs’ tubule formation, whereas knockdown of Bcl-2 inhibited this process. In this model of myocardial ischemia and reperfusion, Bcl-2 expression was increased and was associated with increased p38 MAPK activation.Our results showed that hypoxia induces Bcl-2 expression in HAECs via p38 MAPK pathway.  相似文献   

7.
8.
Soy sauce – a fermented food made from soybeans and wheat – is considered a healthy seasoning, but little scientific evidence is available to support this. In this study, physiological effects of soy sauce were analyzed using Caenorhabditis elegans. When soy sauce was fed to C. elegans together with Escherichia coli OP50, fat accumulation decreased, and resistance to oxidative stress by H2O2 was greatly increased in the nematodes. qRT-PCR revealed that mRNA expression of oxidative stress tolerance genes, including sod, ctl, and gpx, was markedly increased in soy sauce-fed nematodes. Worms ingesting soy sauce showed high mitochondrial membrane potential and reactive oxygen species (ROS) and low intracellular ROS, suggesting that soy sauce induced mitohormesis and decreased cytoplasmic ROS. Therefore, soy sauce ingestion affects the mitochondria and may alter the fat metabolism in C. elegans. Furthermore, the increase in oxidative stress tolerance is mediated through p38 MAPK pathway.  相似文献   

9.
Guo RW  Yang LX  Li MQ  Liu B  Wang XM 《Peptides》2006,27(12):3269-3275
Angiotensin II (Ang II) is the main active peptide of the renin–angiotensin system (RAS), producing a number of inflammatory mediators that lead to endothelial dysfunction and the progression of atherosclerosis. Ang II-induced NF-κB nuclear translocation plays a pivotal role in this response. This study examines the NF-κB activation mechanism elicited by Ang II in human umbilical vein endothelial cells (HUVEC). Electrophoretic mobility shift assays and Western blotting revealed that Ang II, signaling via AT1, produces a time-dependent increase in NF-κB DNA binding and IκB degradation. These results also demonstrate that Ang II leads to MAPK phosphorylation and p38MAPK pathway-induced NF-κB activation. Furthermore, AT1 is required for p38MAPK phosphorylation induced by Ang II. This study provides evidence that Ang II elicits NF-κB activation via the p38MAPK pathway in HUVEC.  相似文献   

10.
Shen J  Sakaida I  Uchida K  Terai S  Okita K 《Life sciences》2005,77(13):1502-1515
Leptin is now recognized as a proinflammatory cytokine and thought to be a progressive factor for non-alcoholic steatohepatitis (NASH). Here we showed the effects of leptin on the production of TNF-alpha (tumor necrosis factor-alpha) by Kupffer cells (KCs) with signal transduction. Leptin enhanced TNF-alpha production accompanied by a dose-dependent increase of MAPK activity in lipopolysaccharide (LPS)-stimulated KCs. SB203580 and JNK inhibitor I, specific inhibitors of P38 and JNK, inhibited TNF-alpha production in KCs but PD98059, an inhibitor of the ERK pathway, did not affect TNF-alpha production by KCs. Recombinant constitutively active adenovirus (Ad)-MKK6 and-MKK7 increased TNF-alpha production in KCs with activation of P38 and JNK without any change by Ad-MEK1 delivery. On the other hand, KCs isolated from the Zucker rat (fa/fa), a leptin receptor-deficient rat, showed reduced production of TNF-alpha on stimulation with LPS. The delivery of Ad-MKK6 and-MKK7, but not Ad-MEK1, increased TNF-alpha production in KCs of Zucker rats with activation of P38 and JNK. Addition of leptin to normal rats increased LPS-induced hepatic TNF-alpha production in vivo and leptin receptor-deficient Zucker rats showed reduced hepatic TNF-alpha production on addition of LPS in vivo. These findings indicate that P38 and JNK pathways are involved in the signal transduction of leptin enhancement of LPS-induced TNF-alpha production.  相似文献   

11.
We have reported earlier that interleukin-1 (IL-1) is a potent growth factor for immature Sertoli cells (somatic cells in the testis required for testicular development and later spermatogenesis) and that this effect is synergistic with the mitogenic effect of follicle-stimulating hormone (FSH). The aim of the present study was to determine whether MAPK pathways are involved in mediating the mitogenic effect of IL-1 on Sertoli cells. Western blotting revealed that IL-1alpha activated p38 MAPK and JNK/SAPK, but not ERK, in Sertoli cells from 8- or 9-day-old rat. The inhibitor of p38 MAPK SB203580 attenuated the IL-1alpha-induced proliferation of Sertoli cells, as assessed by (3)H-thymidine incorporation and supravital staining as well as by direct cell counting. We conclude that the p38 MAPK pathway mediates the proliferative effect of IL-1alpha on immature Sertoli cells in vitro. Since the mitogenic effect of FSH is mediated via ERK, the synergistic action of IL-1alpha and FSH may be explained by their different intracellular signalling pathways. Induction of IL-1 by inflammation, infection or other tissue injuries may result in testicular damage by interfering with normal Sertoli cell development and thus future spermatogenesis.  相似文献   

12.
肺纤维化(Pulmonary fibrosis,PF)是一种进行性发展的、破坏性的纤维化疾病,其主要特征为肺泡上皮细胞损伤、炎性细胞浸润、上皮间充质转变、成纤维细胞的异常增殖和活化、细胞外基质的过度沉积,最终导致肺实质性的破坏。其具体机制不明,目前缺乏有效的治疗手段逆转这种疾病或阻止其发展。近年来的研究发现,信号传导通路在肺纤维化形成过程中的作用越来越受到关注,其中p38丝裂原活化蛋白激酶(p38mitogen-activated protein kinase,p38MAPK)信号通路通过介导炎性细胞浸润、成纤维细胞增殖等参与PF的形成过程。本文就p38MAPK在PF形成过程中的作用作一综述。  相似文献   

13.
14.
Expression of the pro-inflammatory cytokine interleukin-1 beta (IL-1β) is increased following the nervous system injury. Generally IL-1β induces inflammation, leading to neural degeneration, while several neuropoietic effects have also been reported. Although neurite outgrowth is an important step in nerve regeneration, whether IL-1β takes advantages on it is unclear. Now we examine how it affects neurite outgrowth. Following sciatic nerve injury, expression of IL-1β is increased in Schwann cells around the site of injury, peaking 1 day after injury. In dorsal root ganglion (DRG) neurons and cerebellar granule neurons (CGNs), neurite outgrowth is inhibited by the addition of myelin-associated glycoprotein (MAG), activating RhoA. IL-1β overcomes MAG-induced neurite outgrowth inhibition, by deactivating RhoA. Intracellular signaling experiments reveal that p38 MAPK, and not nuclear factor-kappa B (NF-κB), mediated this effect. These findings suggest that IL-1β may contribute to nerve regeneration by promoting neurite outgrowth following nerve injury.  相似文献   

15.
We investigated whether artepillin C, a major component of Brazilian propolis, acts as a neurotrophic-like factor in rat PC12m3 cells, in which nerve growth factor (NGF)-induced neurite outgrowth is impaired. When cultures of PC12m3 cells were treated with artepillin C at a concentration of 20 μM, the frequency of neurite outgrowth induced by artepillin C was approximately 7-fold greater than that induced by NGF alone. Artepillin C induced-neurite outgrowth of PC12m3 cells was inhibited by the ERK inhibitor U0126 and by the p38 MAPK inhibitor SB203580. Although artepillin C-induced p38 MAPK activity was detected in PC12m3 cells, phosphorylation of ERK induced by artepillin C was not observed. On the other hand, artepillin C caused rapid activation of ERK and the time course of the activation was similar to that induced by NGF treatment in PC12 parental cells. However, NGF-induced neurite outgrowth was inhibited by artepillin C treatment. Interestingly, inhibition of ERK by U0126 completely prevented artepillin C-induced p38 MAPK phosphorylation of PC12m3 cells. These findings suggest that artepillin C-induced activation of p38 MAPK through the ERK signaling pathway is responsible for the neurite outgrowth of PC12m3 cells.  相似文献   

16.
Previous research demonstrated that glutamate induces neuronal injury partially by increasing intracellular Ca2+ concentrations ([Ca2+]i), and inducing oxidative stress, leading to a neurodegenerative disorder. However, the mechanism of glutamate-induced injury remains elusive. Gastrodin, a major active component of the traditional herbal agent Gastrodia elata (GE) Blume, has been recognized as a potential neuroprotective drug. In the current study, a classical injury model based on glutamate-induced cell death of rat pheochromocytoma (PC12) cells was used to investigate the neuroprotective effect of gastrodin, and its potential mechanisms involved. In this paper, the presence of gastrodin inhibits glutamate-induced oxidative stress as measured by the formation of reactive oxygen species (ROS), the level of malondialdehyde (MDA), mitochondrial membrane potential (MMP), and superoxide dismutase (SOD); gastrodin also prevents glutamate-induced [Ca2+]i influx, blocks the activation of the calmodulin-dependent kinase II (CaMKII) and the apoptosis signaling-regulating kinase-1 (ASK-1), inhibits phosphorylation of p38 mitogen-activated kinase (MAPK). Additionally, gastrodin blocked the expression of p53 phosphorylation, caspase-3 and cytochrome C, reduced bax/bcl-2 ratio induced by glutamate in PC12 cells. All these findings indicate that gastrodin protects PC12 cells from the apoptosis induced by glutamate through a new mechanism of the CaMKII/ASK-1/p38 MAPK/p53-signaling pathway.  相似文献   

17.
In order to investigate the mechanism of suppressor of cytokine signaling 2 (SOCS2) on mitochondrial biogenesis, RNA interference and over-expression plasmid vectors of SOCS2 were used to transfect murine skeletal muscle C2C12 cells. Results demonstrated that over-expression of SOCS2 inhibited the differentiation of C2C12 cells, and reduced the expression of MyHC, MyoD and MyoG while elevated the protein expression of MSTN. Meanwhile the expression of PGC-1α, MDH, CPT-1 were significantly elevated in the RNA interference of SOCS2 group which were decreased in SOCS2 overexpression group. However, there was no change on the expression of UCP1 in both two groups. JC-1 dyeing showed overexpression of SOCS2 decreased the mitochondrial membrane potential and results of immunofluorescence, real-time PCR and western blotting indicated the increase expression of Cyt c, while interference SOCS2 had the opposite effects in C2C12 cells. Moreover, interference of SOCS2 elevated the p38 phosphorylation level then further increased the phosphorylation of ATF2, whereas overexpression of SOCS2 alleviated this phenomenon. Taken together, our observations indicated that SOCS2 could suppress myotube formation, act as an anti-regulator of mitochondria biogenesis via inhibiting p38 MAPK signal pathway.  相似文献   

18.
BackgroundMesangial cell proliferation is the most basic pathological feature of immunoglobulin A nephropathy (IgAN); however, the specific underlying mechanism and an appropriate therapeutic strategy are yet to be unearthed. This study aimed to investigate the therapeutic effect of triptolide (TP) on IgAN and the mechanism by which TP regulates autophagy and proliferation of mesangial cells through the CARD9/p38 MAPK pathway.MethodsWe established a TP‐treated IgAN mouse model and produced IgA1‐induced human mesangial cells (HMC) and divided them into control, TP, IgAN, and IgAN+TP groups. The levels of mesangial cell proliferation (PCNA, cyclin D1, cell viability, and cell cycle) and autophagy (P62, LC3 II, and autophagy flux rate) were measured, with the autophagy inhibitor 3‐Methyladenine used to explore the relationship between autophagy and proliferation. We observed CARD9 expression in renal biopsies from patients and analyzed its clinical significance. CARD9 siRNA and overexpression plasmids were constructed to investigate the changes in mesangial cell proliferation and autophagy as well as the expression of CARD9 and p‐p38 MAPK/p38 MAPK following TP treatment.ResultsAdministering TP was safe and effectively alleviated mesangial cell proliferation in IgAN mice. Moreover, TP inhibited IgA1‐induced HMC proliferation by promoting autophagy. The high expression of CARD9 in IgAN patients was positively correlated with the severity of HMC proliferation. CARD9/p38 MAPK was involved in the regulation of HMC autophagy and proliferation, and TP promoted autophagy to inhibit HMC proliferation by downregulating the CARD9/p38 MAPK pathway in IgAN.ConclusionTP promotes autophagy to inhibit mesangial cell proliferation in IgAN via the CARD9/p38 MAPK pathway.

The proliferation of glomerular mesangial cells is the most basic pathological feature for IgA nephropathy (IgAN). Galactose‐deficient IgA1 (Gd‐IgA1) immune complex deposition activates mesangial cells to mediate specific intracellular signal transduction, promotes mesangial cell proliferation, and initiates kidney damage. Autophagy is involved in mesangial cell proliferation. CARD9 is a risk gene for IgAN. The triptolide (TP), purified from Tripterygium wilfordii hook F., promotes autophagy to inhibit mesangial cell proliferation in IgAN via the CARD9/p38 MAPK pathway.  相似文献   

19.
The small G-protein ADP-ribosylation factor 6 (Arf6) belongs to the Ras GTPases superfamily and is mostly known for its actin remodeling functions and involvement in the processes of plasma membrane reorganization and vesicular transport. The majority of data indicates that Arf6 contributes to cancer progression through activation of cell motility and invasion. Alternatively, we found that the expression of a wild-type or a constitutively active Arf6 does not influence tumor cell motility and invasion but instead significantly stimulates cell proliferation and activates phospholipase D (PLD). Conversely the expression of a mutant Arf6 (Arf6N48I), that is, unable to interact with PLD has no effect on proliferation but promotes motility, invasion, and matrix degradation by uPA extracellular proteinase. Studying the mechanisms of Arf6-dependent stimulation of cell proliferation, we found some signaling pathways contributing to Arf6 promitogenic activity. Namely, we showed that Arf6 in a PLD-mTORC1-dependent manner activates S6K1 kinase, a well-known regulator of mitogen-stimulated translation initiation. Furthermore, we demonstrated an Arf6-dependent phosphorylation of mTORC1 downstream targets, 4E-BP1 and ribosomal S6 protein, confirming an existence of Arf6-PLD-mTORC1-S6K1/4E-BP1 signaling pathway and also demonstrated its impact on proliferation stimulation. Next, we found that Arf6 activation potentiates Erk1/2 and p38MAP kinases phosphorylation. Surprisingly, p38 opposite to Erk1/2 significantly contributes to Arf6-dependent proliferation increase promoting S6 ribosomal protein phosphorylation at Ser235/236 residues. Therefore, we demonstrated Arf6 proliferation stimulating activity and revealed PLD-mTORC1 and p38MAP kinase as Arf6 partners mediating promitogenic activity. These results highlight a new aspect of Arf6 functioning in cancer cell biology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号