首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We used tomato genotypes deficient in the jasmonic acid (JA) pathway to study the interaction between the production of herbivore‐induced plant volatiles (HIPVs) that serve as information cues for herbivores as well as natural enemies of herbivores, and the production of foliar trichomes as defence barriers. We found that jasmonic acid‐insensitive1 (jai1) mutant plants with both reduced HIPVs and trichome production received higher oviposition of adult leafminers, which were more likely to be parasitized by the leafminer parasitoids than JA biosynthesis spr2 mutant plants deficient in HIPVs but not trichomes. We also showed that the preference and acceptance of leafminers and parasitoids to trichome‐removed plants from either spr2 or wild‐type (WT) genotypes over trichome‐intact genotypes can be ascribed to the reduced trichomes on treated plants, but not to altered direct and indirect defence traits such as JA, proteinase inhibitor (PI)‐II and HIPVs levels. Although the HIPVs of WT plants were more attractive to adult insects, the insects preferred trichome‐free jai1 plants for oviposition and also had greater reproductive success on these plants. Our results provide strong evidence that antagonism between HIPV emission and trichome production affects tritrophic interactions. The interactions among defence traits are discussed.  相似文献   

2.
Indirect plant defence mechanisms enhance the effectiveness of natural enemies of herbivores. Herbivore‐induced plant volatiles (HIPVs) attract the parasitoids of insect herbivores as shown both in numerous choice tests conducted under laboratory conditions and in relatively few common‐garden setups in agro‐ecosystems. However, the importance of this indirect defence trait at higher levels of biological organization has yet to be investigated through natural field experiments. Here, we report a field experiment of larval parasitism of two cyclic geometrid defoliators in herbivore‐damaged and fairly intact mountain birch Betula pubescens ssp. czerepanovii under natural conditions. Parasitism rates in larvae of the autumnal (Epirrita autumnata) and winter moth (Operophtera brumata) exposed for 30 h on defoliated trees were more than twice as high as those on control trees. This finding indicates that hymenopteran parasitoids were attracted to previously defoliated trees by some cues from the host plants, HIPVs being the most likely candidates. The third trophic level should thus be considered in natural plant herbivore interactions. Furthermore, parasitoids and food resources are key factors in the population regulation of forest insect pests, and indirect plant defences could be important in their interactions. Our research also emphasizes the quality of control treatments in field experiments, since immediate plant responses easily obscure the results as soon as control trees become infested by herbivorous insects.  相似文献   

3.
Plants are faced with a trade-off between on the one hand growth, development and reproduction and on the other hand defence against environmental stresses. Yet, research on insect-plant interactions has addressed plant-pollinator interactions and plant-attacker interactions separately. Plants have evolved a high diversity of constitutive and induced responses to attack, including the systemic emission of herbivore-induced plant volatiles (HIPVs). The effect of HIPVs on the behaviour of carnivorous insects has received ample attention for leaf-feeding (folivorous) species and their parasitoids and predators. Here, we review whether and to what extent HIPVs affect the interaction of plants in the flowering stage with mutualistic and antagonistic insects. Whereas the role of flower volatiles in the interactions between plants and insect pollinators has received increased attention over the last decade, studies addressing both HIPVs and pollinator behaviour are rare, despite the fact that in a number of plant species herbivory is known to affect flower traits, including size, nectar secretion and composition. In addition, folivory and florivory can also result in significant changes in flower volatile emission and in most systems investigated, pollinator visitation decreased, although exceptions have been found. Negative effects of HIPVs on pollinator visitation rates likely exert negative selection pressure on HIPV emission. The systemic nature of herbivore-induced plant responses and the behavioural responses of antagonistic and mutualistic insects, requires the study of volatile emission of entire plants in the flowering stage. We conclude that approaches to integrate the study of plant defences and pollination are essential to advance plant biology, in particular in the context of the trade-off between defence and growth/reproduction.  相似文献   

4.
Many parasitoid species use olfactory cues to locate their hosts. In tritrophic systems, parasitoids of herbivores can exploit the chemical blends emitted by plants in reaction to herbivore‐induced damage, known as herbivore‐induced plant volatiles (HIPVs). In this study, we explored the specificity and innateness of parasitoid responses to HIPVs using a meta‐analysis of data from the literature. Based on the concept of dietary specialization and infochemical use, we hypothesized that (i) specialist parasitoids (i.e., with narrow host ranges) should be attracted to specific HIPV signals, whereas generalist parasitoids (i.e., with broad host ranges) should be attracted to more generic HIPV signals and (ii) specialist parasitoids should innately respond to HIPVs, whereas generalist parasitoids should have to learn to associate HIPVs with host presence. We characterized the responses of 66 parasitoid species based on published studies of parasitoid behavior. Our meta‐analysis showed that (i) as predicted, specialist parasitoids were attracted to more specific signals than were generalist parasitoids but, (ii) contrary to expectations, response innateness depended on a parasitoid's target host life stage rather than on its degree of host specialization: parasitoids of larvae were more likely to show an innate response to HIPVs than were parasitoids of adults. This result changes our understanding of dietary specialization and highlights the need for further theoretical research that will help clarify infochemical use by parasitoids.  相似文献   

5.

Female parasitoids distinguish between host-infested and intact plants using chemical cues; however, the contribution of intact plants to host searching of parasitoids has not been investigated so far. Here, we tested how host-searching behavior of the parasitoid wasp, Cotesia kariyai (Watanabe) (Hymenoptera: Braconidae), was affected by intact maize plants in a wind tunnel. To determine the best color for material to create a plant model, we observed flight responses of female wasps to paper plant models of four different colors. Wasps tended to land more frequently on green models than other models. Therefore, a green paper model was used for subsequent experiments. In a no-choice test, female wasps showed higher landing rates on a paper plant model treated with herbivore-induced plant volatiles (HIPVs) than on an intact plant. Moreover, in two-choice tests, wasps preferred the plant model with HIPVs over an intact plant with HIPVs. Intact plants seem to deter C. kariyai females. Our findings suggest that information from intact plants also contributes to the host-searching behavior of females in the natural environment.

  相似文献   

6.
Chemical information influences the behaviour of many animals, thus affecting species interactions. Many animals forage for resources that are heterogeneously distributed in space and time, and have evolved foraging behaviour that utilizes information related to these resources. Herbivore‐induced plant volatiles (HIPVs), emitted by plants upon herbivore attack, provide information on herbivory to various animal species, including parasitoids. Little is known about the spatial scale at which plants attract parasitoids via HIPVs under field conditions and how intraspecific variation in HIPV emission affects this spatial scale. Here, we investigated the spatial scale of parasitoid attraction to two cabbage accessions that differ in relative preference of the parasitoid Cotesia glomerata when plants were damaged by Pieris brassicae caterpillars. Parasitoids were released in a field experiment with plants at distances of up to 60 m from the release site using intervals between plants of 10 or 20 m to assess parasitism rates over time and distance. Additionally, we observed host‐location behaviour of parasitoids in detail in a semi‐field tent experiment with plant spacing up to 8 m. Plant accession strongly affected successful host location in field set‐ups with 10 or 20 m intervals between plants. In the semi‐field set‐up, plant finding success by parasitoids decreased with increasing plant spacing, differed between plant accessions, and was higher for host‐infested plants than for uninfested plants. We demonstrate that parasitoids can be attracted to herbivore‐infested plants over large distances (10 m or 20 m) in the field, and that stronger plant attractiveness via HIPVs increases this distance (up to at least 20 m). Our study indicates that variation in plant traits can affect attraction distance, movement patterns of parasitoids, and ultimately spatial patterns of plant–insect interactions. It is therefore important to consider plant‐trait variation in HIPVs when studying animal foraging behaviour and multi‐trophic interactions in a spatial context.  相似文献   

7.
The invasive goldspotted oak borer, Agrilus auroguttatus Schaeffer (Coleoptera: Buprestidae), has caused extensive mortality to indigenous oaks in southern California. This woodborer is native to southern Arizona where low population densities may, in part, be due to the presence of co-evolved natural enemies. Surveys were conducted in Arizona and California from June to August 2013 by deploying sentinel egg masses in an attempt to attract, collect and identify potential egg parasitoids of this beetle that could be used for a classical biological control programme in California. In total, 18,052 A. auroguttatus eggs were deployed throughout the native and introduced range. Parasitoids did not attack any eggs deployed in Arizona or California. The inability to detect egg parasitoids could be explained by the following: (1) host-specific egg parasitoids of A. auroguttatus do not exist, (2) surveying time did not coincide with peak activity of egg parasitoids or (3) surveying methods were insufficient at detecting egg parasitoids.  相似文献   

8.
Herbivore‐induced plant volatiles (HIPVs) are important cues for female parasitic wasps to find hosts. Here, we investigated the possibility that HIPVs may also serve parasitoids as cues to locate mates. To test this, the odour preferences of four braconid wasps – the gregarious parasitoid Cotesia glomerata (L.) and the solitary parasitoids Cotesia marginiventris (Cresson), Microplitis rufiventris Kokujev and Microplitis mediator (Haliday) – were studied in olfactometers. Each species showed attraction to pheromones but in somewhat different ways. Males of the two Cotesia species were attracted to virgin females, whereas females of M. rufiventris were attracted to virgin males. Male and female M. mediator exhibited attraction to both sexes. Importantly, female and male wasps of all four species were strongly attracted by HIPVs, independent of mating status. In most cases, male wasps were also attracted to intact plants. The wasps preferred the combination of HIPVs and pheromones over plant odours alone, except M. mediator, which appears to mainly use HIPVs for mate location. We discuss the ecological contexts in which the combined use of pheromones and HIPVs by parasitoids can be expected. To our knowledge, this is the first study to show that braconid parasitoids use HIPVs and pheromones in combination to locate mates.  相似文献   

9.
1. In species such as quasi-gregarious egg parasitoids, which exploit defendable patches, the fitness pay-off from superparasitism is an important factor in considering the evolution of patch defence and optimal patch defence strategies.
2. When oviposition in a previously parasitized host has a non-zero fitness pay-off, competing parasitoids are not only able to diminish the future value of a patch to other females by depleting unparasitized hosts, but also devalue the previous investment of other females in the patch by superparasitizing.
3. In Trissolcus basalis , an egg parasitoid of pentatomid bugs, the fitness pay-off from superparasitism is higher than 0.5 when the time interval between ovipositions is less than 3 h, suggesting that defending a previous investment will be an important component of patch defence behaviour.
4. The data suggest a mechanism for the high early pay-off, which involves the superparasitizing female adjusting the sex ratio of its offspring in favour of males. Males develop more quickly than females and thus may have a competitive advantage.  相似文献   

10.
Jaime Potti   《Acta Oecologica》2008,33(3):387-393
The predicted effects of recent climate warming on egg size in birds are controversial, as only two long-term studies have been reported, with contrasting results. Long-term data on egg size variation are analyzed in relation to ambient temperatures in a southern European population of pied flycatchers where breeding phenology has not matched the spring advancement in the last decades. Cross-sectional, population analyses indicated that egg breadth, but not egg length, has decreased significantly along the 16-year period, leading to marginally non-significant decreases in egg volume. Longitudinal, individual analyses revealed that despite females consistently laying larger eggs when they experienced warmer temperatures during the prelaying and laying periods, there was an overall negative response – i.e. decreasing egg volume and breadth with increasing spring (May) average temperatures – across individuals. This trend is hypothesised to be caused by the mismatched breeding phenology, in relation to climate warming, of this population. Except in the unlikely cases of populations capable of perfectly synchronising their phenology to changes in their environment, maladjustments are likely for traits such as egg size, which depend strongly on female condition. Slight changes or absence thereof in breeding dates may be followed by mismatched dates, in terms of food abundance, for optimal egg formation, which would be reflected in smaller average egg size, contrary to early predictions on the effects of climate warming on bird egg size.  相似文献   

11.
Generalist parasitoids are well‐known to be able to cope with the high genotypic and phenotypic plasticity of plant volatiles by learning odours during their host encounters. In contrast, specialised parasitoids often respond innately to host‐specific cues. Previous studies have shown that females of the specialised egg parasitoid Chrysonotomyia ruforum Krausse (Hymenoptera: Eulophidae) are attracted to volatiles from Pinus sylvestris L. induced by the egg deposition of its host Diprion pini L. (Hymenoptera: Diprionidae), when they have previously experienced pine twigs with host eggs. In this study we investigated by olfactometer bioassays how specifically C. ruforum responded to oviposition‐induced plant volatiles. Furthermore, we studied whether parasitoids show an innate response to oviposition‐induced pine volatiles. Naïve parasitoids were not attracted to oviposition‐induced pine volatiles. The attractiveness of volatiles from pines carrying eggs was shown to be specific for the pine and herbivore species, respectively (species specificity). We also tested whether not only oviposition, but also larval feeding, induces attractive volatiles (developmental stage specificity). The feeding of D. pini larvae did not induce the emission of P. sylvestris volatiles attractive to the egg parasitoid. Our results show that a specialist egg parasitoid does not innately show a positive response to oviposition‐induced plant volatiles, but needs to learn them. Furthermore, the results show that C. ruforum as a specialist does not learn a wide range of volatiles as some generalists do, but instead learns only a very specific oviposition‐induced plant volatile pattern, i.e., a pattern induced by the most preferred host species laying eggs on the most preferred food plant.  相似文献   

12.
Direct and indirect plant defences are well studied, particularly in the Brassicaceae. Glucosinolates (GS) are secondary plant compounds characteristic in this plant family. They play an important role in defence against herbivores and pathogens. Insect herbivores that are specialists on brassicaceous plant species have evolved adaptations to excrete or detoxify GS. Other insect herbivores may even sequester GS and employ them as defence against their own antagonists, such as predators. Moreover, high levels of GS in the food plants of non-sequestering herbivores can negatively affect the growth and survival of their parasitoids. In addition to allelochemicals, plants produce volatile chemicals when damaged by herbivores. These herbivore induced plant volatiles (HIPV) have been demonstrated to play an important role in foraging behaviour of insect parasitoids. In addition, biosynthetic pathways involved in the production of HIPV are being unraveled using the model plant Arabidopsis thialiana. However, the majority of studies investigating the attractiveness of HIPV to parasitoids are based on experiments mainly using crop plant species in which defence traits may have changed through artificial selection. Field studies with both cultivated and wild crucifers, the latter in which defence traits are intact, are necessary to reveal the relative importance of direct and indirect plant defence strategies on parasitoid and plant fitness. Future research should also consider the potential conflict between direct and indirect plant defences when studying the evolution of plant defences against insect herbivory.  相似文献   

13.
Induction of plant defences, specifically in response to herbivore attack, can save costs that would otherwise be needed to maintain defences even in the absence of herbivores. However, plants may suffer considerable damage during the time required to mount these defences against an attacker. This could be resolved if plants could respond to early cues, such as egg deposition, that reliably indicate future herbivory. We tested this hypothesis in a field experiment and found that egg deposition by the butterfly Pieris brassicae on black mustard (Brassica nigra) induced a plant response that negatively affected feeding caterpillars. The effect cascaded up to the third and fourth trophic levels (larval parasitoids and hyperparasitoids) by affecting the parasitisation rate and parasitoid performance. Overall, the defences induced by egg deposition had a positive effect on plant seed production and may therefore play an important role in the evolution of plant resistance to herbivores.  相似文献   

14.
1. Synovigenic parasitoids emerging with no or only a few mature oocytes could not rely on only capital resources, but also need to acquire income resources. Income resources in nature can either contribute to egg maturation as a food resource and/or create unpredictability in realised reproductive opportunities for synovigenic parasitoids. Therefore, we hypothesised such resources could affect life history traits and the risks of egg/time limitation in synovigenic parasitoids. 2. Using the Ovigeny Index, we investigated the effects of various host availability levels (unavailable, limited, and unlimited availability) and non‐host foods (water and honey) on life history traits and on the occurrence of egg/time limitation in Eretmocerus hayati, a predominant parasitoid on Bemisia tabaci. 3. The Ovigeny Index of Er. hayati was 0.28, which suggested it was a typical synovigenic species. Both host availability levels and non‐food type had major effects on life history traits of this parasitoid, but the availability of hosts for both feeding and reproduction was the key factor. Meanwhile, egg/time limitation was encountered by all wasps and its intensity varied with host availability levels. 4. Our results confirmed that the income resource and reproductive opportunity played a central role in shaping the life history and risks of egg/time limitation of a synovigenic parasitoid.  相似文献   

15.
Egg distribution in herbivorous beetles can be affected by bottom-up (host plant), and by top-down factors (parasitoids and predators), as well as by other habitat parameters. The importance of bottom-up and top-down effects may change with spatial scale.

In this study, we investigated the influence of host plant factors and habitat structure on egg distribution in the leaf beetle Cassida canaliculata Laich. (Coleoptera: Chrysomelidae), a monophagous herbivore on Salvia pratensis L. (Lamiales: Lamiaceae), on four spatial scales: individual host plant, microhabitat, macrohabitat, and landscape. At the individual host plant scale we studied the correlation between egg clutch incidence and plant size and quality. On all other scales we analyzed the relationship between the egg clutch incidence of C. canaliculata and host plant percentage cover, host plant density, and the surrounding vegetation structure. Vegetation structure was examined as herbivores might escape egg parasitism by depositing their eggs on sites with vegetation factors unfavorable for host searching parasitoids.

The probability that egg clutches of C. canaliculata were present increased with an increasing size, percentage cover, and density of the host plant on three of the four spatial scales: individual host plant, microhabitat, and macrohabitat. There was no correlation between vegetation structure and egg clutch occurrence or parasitism on any spatial scale. A high percentage of egg clutches (38–56%) was parasitized by Foersterella reptans Nees (Hymenoptera: Tetracampidae), the only egg parasitoid, but there was no relationship between egg parasitism and the spatial distribution of egg clutches of C. canaliculata on any of the spatial scales investigated. However, we also discuss results from a further study, which revealed top-down effects on the larval stage.  相似文献   


16.
为明确水稻品种和施肥时间对白背飞虱Sogatella furcifera (Horvath)卵被稻飞虱缨小蜂Anagrus spp.寄生率的影响,采用产卵苗诱集法和田间双因子设计进行实验研究。与秀水11水稻品种相比,协优413品种上的白背飞虱卵块位置较高且卵块较大。诱集实验表明白背飞虱卵的被寄生率显著受用于诱集的产卵水稻品种的影响, 在协优413上所产卵的被寄生率(24%)显著高于秀水11上的相应值(12%),而不受由田间品种和氮肥施用时间组合而形成的诱集苗所置放的栖境条件的影响。田间种植的水稻品种对其稻株上的白背飞虱卵被寄生率的影响大于施肥时间, 在卵高峰期,这种影响更为显著, 协优413上的被寄生率(17%)显著高于秀水11上的相应值(9%)。田间寄生率和诱集寄生率二者的反正弦平方根转换值间存在着极显著的直线相关。这些结果表明,水稻品种是加强白背飞虱自然生物防治的重要因子。  相似文献   

17.
Parasites rely on their hosts not only for nutrition and reproduction, but also for protection against natural enemies and adverse climatic conditions. In host‐parasite interactions, protective characteristics of both players are important to consider regarding damaging effects of environmental hazards. While ultraviolet radiation (UVR) is pervasive and harmful to organisms in general, its impact on parasite fitness remains understudied. Moreover, studies that do examine the effects of UV exposure on parasitic organisms tend to neglect host traits, which may vary inter‐ or intra‐specifically and thus confer different levels of environmental protection. We examined in the laboratory whether the UV‐protective value of host egg pigmentation could also benefit parasitoids, using the egg parasitoid Telenomus podisi and the predatory stink bug Podisus maculiventris. This host species lays eggs of variable pigmentation levels from light to dark grey, an adaptation protecting its own embryos from UVR. We showed that higher levels of host egg pigmentation protect parasitoids subjected to a developmental exposure to UVR, increasing emergence rates by up to 86% and reducing development time by up to 4%. This protective effect of host pigmentation was context‐dependent, being less pronounced at low UVR intensity and towards the end of parasitoid development. Parasitoids that emerged from darker‐coloured eggs exposed to UVR were of slightly larger size than those developing in light‐coloured eggs, but other fitness‐related traits (fecundity, longevity, sex ratio) were unaffected. This study provides the first experimental evidence that host pigmentation can increase host suitability for parasitic organisms, and emphasizes the importance of considering trait variation in interacting species when investigating the susceptibility of ecological communities to important abiotic environmental factors.  相似文献   

18.
Landscape context influences population dynamics of insects and impacts biological processes within communities. It was expected that anthropogenic disturbances of the rainforest landscape in DR Congo would lead to a decreased level of noctuid stemborer egg parasitism as a consequence of a decoupling between stemborers and their naturally occurring parasitoids through dispersal. To test this hypothesis, noctuid egg batches were collected in maize fields along an anthropogenic disturbance gradient to assess change in the rates of eggs parasitism and maize plant infestation with noctuid egg batches. Our results showed that, in contrast to what was initially expected, egg parasitism increased from less to highly disturbed landscape whereas maize infestation had an inverse tendency. Discovery efficiency and mean egg parasitism were 1.416 and 1.392 times higher, respectively, in the most than in the less disturbed landscape. The numbers of eggs and egg batches per 100 maize plants were 0.55 times and 0.532 times the value in the less disturbed landscape, suggesting a dilution of the stemborer population within a large habitat patch encompassing cultivated fields and the surrounding wild host plants. It was concluded that the presence of suitable host plants enhances noctuid stemborers egg parasitism in adjacent maize fields.  相似文献   

19.
Plants are able to activate direct and indirect defences against egg deposition by herbivorous insects. A known indirect defence is the production of synomones to help egg‐ and egg‐larval parasitoids to locate their hosts. The wasp Ascogaster reticulata Watanabe (Hymenoptera: Braconidae) is a solitary egg‐larval parasitoid of the moth Adoxophyes honmai Yasuda (Lepidoptera: Tortricidae), which lays eggs and feeds as caterpillars on the leaves of the tea plant Camellia sinensis (L.) Kuntze (Theaceae). Here, we studied whether or not oviposition by A. honmai induces tea plants to produce synomones that help the parasitoid to locate its host. An olfactometer bioassay suggested that synomones produced by the infested plants did not attract the parasitoid over a short range. However, a contact bioassay showed that tea leaves were induced to arrest the parasitoid 24 h after egg deposition and remained induced until the host‐egg masses were no more attractive to the parasitoids. Wing scales and deposits of adult moths and the contents of the egg masses did not induce the tea leaves to arrest the parasitoid, but the contents of the female moth's reproductive system did. Synomone induction was systemic: uninfested leaves in the vicinity of egg‐laden leaves also arrested the parasitoid.  相似文献   

20.
Plants may respond both to feeding and oviposition by herbivorous insects. While responses of plants to feeding damage by herbivores have been studied intensively during the past decades, only a few, but growing number of studies consider the reactions of plants towards egg deposition by herbivorous insects. Plants showing defensive response to oviposition by herbivores do not `wait' until being damaged by feeding, but may instead react towards one of the initial steps of herbivore attack, the egg deposition. Direct plant defensive responses to feeding act directly against the feeding stages of the herbivores. However, a plant may also show direct defensive responses to egg deposition by (a) formation of neoplasms, (b) formation of necrotic tissue (= hypersensitive response), and (c) production of oviposition deterrents. All these plant reactions have directly negative effects on the eggs, hatching larvae, or on the ovipositing females. Indirect plant defensive responses to feeding result in the emission of volatiles (= synomones) that attract predators or parasitoids of the feeding stages. A few recent studies have shown that plants are able to emit volatiles also in response to egg deposition and that these volatiles attract egg parasitoids. Studies on the mechanisms of induction of synomones by egg deposition show several parallels to the mechanisms of induction of plant responses by feeding damage. When considering induced plant defence against herbivores from an evolutionary point of view, the question arises whether herbivores evolved the ability to circumvent or even to exploit the plant's defensive responses. The reactions of herbivores to oviposition induced plant responses are compared with their reactions to feeding induced plant responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号