共查询到20条相似文献,搜索用时 31 毫秒
1.
An NADP+ —dependent reversible 3-hydroxycarboxylate oxidoreductase present in Clostridium tyrobutyricum has been purified. As judged by gel electrophoresis the enzyme was pure after a 940-fold enrichment by four chromatographic steps. Its molecular mass was estimated to be 40–43 kDa. The enzyme was most active at pH 4.5 in the reduction of 3-oxobutyrate. Other substrates were 3-oxovalerate, 3-oxocaproate, 3-oxoisocaproate and 4-chloro-3-oxobutyrate. Except for the latter all substrates were converted enantioselectively to (S)-3-hydroxy acids in the presence of NADPH. 4-Chloro-3-oxobutyrate was reduced to the (R)-3-hydroxy acid. The specific activity of the enzyme was about 1400 mol min–1 mg–1 protein for the reduction of 3-oxobutyrate at pH 5.0. The Michaelis constant (K
m) values for 3-oxobutyrate, 3-oxovalerate and 3-oxocaproate were determined to be 0.22, 1.6 and 3.0 mM, respectively. The K
m values for dehydrogenation of (S)-3-hydroxybutyrate, (S)-3-hydroxyvalerate and (S)-3-hydroxycaproate were found to be 2.6, 1.1 and 5.2 mM, respectively. The identity of 43 of the first 45 N-terminal amino acid residues has been determined. So far such enzyme activities have been described in eucaryotes only.Dedicated to Prof. A. Trebst on the occasion of his 65th birthday 相似文献
2.
The purification and partial characterisation of an NADP(H) dependent artificial mediator accepting pyridine nucleotide oxidoreductase (AMAPOR) from the anaerobic Clostridium thermoaceticum is described. Depending on the redox potential of the artificial mediators the AMAPOR is able to regenerate NADP+ or NADPH rendering the enzyme useful for preparative work applying NADP(H) dependent oxidoreductases. At 37 degrees C crude extracts of C. thermoaceticum have an AMAPOR activity of 5-7 U mg(-1). This is 28 degrees under the optimal growth temperature of this microrganism. Out of apparently more than 10 AMAPOR active proteins in the crude cell extracts visible after electrophoresis and activity staining on the gel, two of these proteins were isolated. They seem to be two different oligomers. According to gel electrophoresis they show apparent molecular masses of about 200 and 400 kDa. These two forms showed after SDS gel electrophoresis two monomers with apparent molecular masses of 42 and 56 kDa which we call alpha and beta. The two oligomers may have the compositions alpha2beta2 and alpha4beta4. They contain Fe/S cluster and FAD. Various amounts of the FAD were lost during the purification procedure. This loss is partially reversible after addition of FAD. The AMAPOR reacts with rather different artificial mediators such as viologens, quinones e.g. 1,4-benzoquinone or anthraquinone-2,6-disulphonate, 2,6-dichloro-indophenol and clostridial rubredoxin. Two different ferredoxins from C. thermoaceticum, oxygen or lipoamide are no substrates indicating the here described AMAPOR is not a diaphorase in the usual sense. 相似文献
3.
An NADH-dependent (S)-specific 3-oxobutyryl-CoA reductase from Clostridium tyrobutyricum was purified 15-fold with a yield of 46%. It was homogeneous by gel electrophoresis after three chromatographic steps. The apparent molecular mass was estimated by column chromatography to be 240 kDa. SDS-gel electrophoresis revealed the presence of 33 kDa subunits. Substrates of the enzyme were ethyl and methyl 3-oxobutyrate, 3-oxobutyryl-N-acetylcysteamine thioester, and 3-oxobutyryl coenzyme A. The specific activities were 340 and 10 U (mg protein)-1 for the reduction of 3-oxobutyryl coenzyme A and ethyl 3-oxobutyrate, respectively; the Michaelis constants were 300 M and 300 mM, respectively. The identity of 12 N-terminal amino acid residues was determined. The ezmyme was used in a preparative reduction of substrate, yielding ethyl (S)-3-hydroxybutyrate (>99% enantiomeric excess). 相似文献
4.
5.
Fujimoto S Yoshikawa K Itoh M Kitaharai T 《Bioscience, biotechnology, and biochemistry》2002,66(6):1389-1392
(R)-(-)-Muscone (3-methylcyclopentadecanone, 1) the key perfumery component isolated from the male musk deer, Moschus moschiferus,* was synthesized from the easily available chiral building block, (R)-3-tert-butoxycarbonyl-2-methylpropanoic acid (2), by employing ring-closing olefin metathesis (RCM). Antipode (+)-1 was also synthesized in a similar manner from tert-butyl (S)-3-methoxycarbonylbutanoate (10). *(a) Walbaum, H. J. J. Prakt. Chem., 73, 488 (1906); (b) Ruzicka, L., Further considerations on the constitution of muscone. Helv. Chim. Acta, 9, 715, 1008-1017 (1926). 相似文献
6.
Khomutov M. A. Hyvönen M. T. Salikhov A. I. Chizhov A. O. Ryzhov I. M. Kochetkov S. N. Vepsäläinen J. Keinänen T. A. Khomutov A. R. 《Russian Journal of Bioorganic Chemistry》2020,46(6):1061-1066
Russian Journal of Bioorganic Chemistry - A simple and practical 10-step synthesis is reported for previously unknown diastereomers of C?methylated spermine (Spm) analogue,... 相似文献
7.
We have described the synthesis of (+)-(2R,3S,4R)-2,3,4-trihydroxycyclohexanone by the reduction of a keto-conduritol derivative, the latter being prepared in five steps from (-)-(2S,3R,4S,5S)-2,3,4-tribenzyloxy-5-hydroxycyclohexanone, which is in turn readily synthesized from D-glucose. 相似文献
8.
Addition of 5-bromo-2′,3′-O-isopropylidene-5′-O-trityluridine (2) in pyridine to an excess of 2-lithio-1,3-dithiane (3) in oxolane at 78° gave (6R)-5,6-dihydro-(1,3-dithian-2-yl)-2′,3′-O-isopropylidene -5′-O-trityluridine (4), (5S,6S)-5-bromo-5,6-dihydro-(1,3-dithian-2-yl)-2′,3′-O-isopropylidene-5′-O-trityluridine (5), and its (5R) isomer 6 in yields of 37, 35, and 10%, respectively. The structure of 4 was proved by Raney nickel desulphurization to (6S)-5,6-dihydro-2′,3′-O-isopropylidene-6-methyl-5′-O-trityluridine (7) and by acid hydrolysis to give D-ribose and (6R)-5,6-dihydro-6-(1,3-dithian-2-yl)uracil (9). Treatment of 4 with methyl iodide in aqueous acetone gave a 30&%; yield of (R,S)-5,6-dihydro-6-formyl-2′,3′-O-isopropylidene-5′-O-trityl-uridine (10), characterized as its semicarbazone 11. Both 5 and 6 gave 4 upon brief treatment with Raney nickel. Both 5 and 6 also gave 6-formyl-2′,3′-O-isopropylidene-5′- O-trityluridine (12) in ~41%; yield when treated with methyl iodide in aqueous acetone containin- 10%; dimethyl sulfoxide. A by-product, identified as the N-methyl derivative (13) of 12 was also formed in yields which varied with the amount of dimethyl sulfoxide used. Reduction of 12 with sodium borohydride, followed by deprotection, afforded 6-(hydroxymethyl)uridine (17), characterized by hydrolysis to the known 6-(hydroxymethyl)uracil (18). Knoevenagel condensation of a mixture of the aldehydes 12 and 13 with ethyl cyanoacetate yielded 38%; of E- (or Z-)6-[(2-cyano-2-ethoxycarbonyl)ethylidene]-2′,3′-O-isopropylidene-5′-O-trityluridine (19) and 10%; of its N-methyl derivative 20. Hydrogenation of 19 over platinum oxide in acetic anhydride followed by deprotection gave R (or S)-6-(3-amino-2-carboxypropyl)uridine (23). 相似文献
9.
Kawasaki H Koyama K Kurokawa S Watanabe K Nakazawa M Izawa K Nakamatsu T 《Bioscience, biotechnology, and biochemistry》2006,70(1):99-106
(R)-3-Amino-3-phenylpropionic acid ((R)-beta-Phe) and (S)-3-amino-3-phenylpropionic acid ((S)-beta-Phe) are key compounds on account of their use as intermediates in synthesizing pharmaceuticals. Enantiomerically pure non-natural amino acids are generally prepared by enzymatic resolution of the racemic N-acetyl form, but despite the intense efforts this method could not be used for preparing enantiomerically pure beta-Phe, because the effective enzyme had not been found. Therefore, screening for microorganisms capable of amidohydrolyzing (R,S)-N-acetyl-3-amino-3-phenylpropionic acid ((R,S)-N-Ac-beta-Phe) in an enantiomer-specific manner was performed. A microorganism having (R)-enantiomer-specific amidohydrolyzing activity and another having both (R)-enantiomer- and (S)-enantiomer-specific amidohydrolyzing activities were obtained from soil samples. Using 16S rDNA analysis, the former organism was identified as Variovorax sp., and the latter as Burkholderia sp. Using these organisms, enantiomerically pure (R)-beta-Phe (>99.5% ee) and (S)-beta-Phe (>99.5% ee) with a high molar conversion yield (67%-96%) were obtained from the racemic substrate. 相似文献
10.
11.
Two diastereomeric nicotinamide adenine dinucleotide (NAD+) derivatives were synthesized in which the substrates of (S)-and (R)-lactate-specific dehydrogenases are covalently attached via a methylene spacer at position 5 of the nicotinamide ring. The corresponding nicotinamide derivatives were obtained stereospecifically by enzymatic reduction of 5-(2-oxalylethyl)nicotinamide. (3S)-5-(3-Carboxy-3-hydroxypropyl)-NAD+ undergoes and intramolecular hydride transfer in the presence of pig heart lactate dehydrogenase, forming the corresponding coenzyme-substrate analogue composed of pyruvate and NADH. No cross-reaction products resulting from an intermolecular reaction are observed. Two (R)-lactate specific dehydrogenases, however, do not catalyze a similar reaction in either one of the two diastereomers. A possible arrangement of the substrates in the active centers of these enzymes is proposed. 5-Methyl-NAD+ and 5-methyl-NADH are active coenzymes of pig heart lactate dehydrogenase in contrast to reports in the literature. (S)-Lactate binds to this enzyme in the absence of coenzyme, exhibiting a dissociation constant of 11 mM. 相似文献
12.
A short and efficient synthesis of steroid synthons, di(tert-butyldimethylsilyl) ethers of 3,21-dihydroxy-24-nor-chol-5-en-23-al (8 and 10) and of ethyl 3,21-dihydroxy-25-homo-chola-5,23-dien-25-oate (9 and 11), having natural (20R) and unnatural (20S) configuration from 3β-(tert-butyldimethylsilyloxy)-14α,20ξ-card-5-enolide (2) is reported. Further elongation of the side chain of these synthons provides a new method for the synthesis of (20R) and (20S)-21-hydroxy steroids. The utility of the method was exemplified by the synthesis of a natural marine sterol - 21-hydroxycholesterol (18). 相似文献
13.
Om P. Mishra Nicholas Simmons Sonia Tyagi Ralph Pietrofesa Vladimir V. Shuvaev Roman A. Valiulin Philipp Heretsch K.C. Nicolaou Melpo Christofidou-Solomidou 《Bioorganic & medicinal chemistry letters》2013,23(19):5325-5328
Secoisolariciresinol diglucosides (SDGs) (S,S)-SDG-1 (major isomer in flaxseed) and (R,R)-SDG-2 (minor isomer in flaxseed) were synthesized from vanillin via secoisolariciresinol (6) and glucosyl donor 7 through a concise route that involved chromatographic separation of diastereomeric diglucoside derivatives (S,S)-8 and (R,R)-9. Synthetic (S,S)-SDG-1 and (R,R)-SDG-2 exhibited potent antioxidant properties (EC50 = 292.17 ± 27.71 μM and 331.94 ± 21.21 μM, respectively), which compared well with that of natural (S,S)-SDG-1 (EC50 = 275.24 ± 13.15 μM). These values are significantly lower than those of ascorbic acid (EC50 = 1129.32 ± 88.79 μM) and α-tocopherol (EC50 = 944.62 ± 148.00 μM). Compounds (S,S)-SDG-1 and (R,R)-SDG-2 also demonstrated powerful scavenging activities against hydroxyl [natural (S,S)-SDG-1: 3.68 ± 0.27; synthetic (S,S)-SDG-1: 2.09 ± 0.16; synthetic (R,R)-SDG-2: 1.96 ± 0.27], peroxyl [natural (S,S)-SDG-1: 2.55 ± 0.11; synthetic (S,S)-SDG-1: 2.20 ± 0.10; synthetic (R,R)-SDG-2: 3.03 ± 0.04] and DPPH [natural (S,S)-SDG-1: EC50 = 83.94 ± 2.80 μM; synthetic (S,S)-SDG-1: EC50 = 157.54 ± 21.30 μM; synthetic (R,R)-SDG-2: EC50 = 123.63 ± 8.67 μM] radicals. These results confirm previous studies with naturally occurring (S,S)-SDG-1 and establish both (S,S)-SDG-1 and (R,R)-SDG-2 as potent antioxidants and free radical scavengers for potential in vivo use. 相似文献
14.
P K Subramanian R W Woodard 《International journal of peptide and protein research》1986,28(6):579-585
The synthesis of optically pure (R)- and (S)-2-methyl-[3,3,3-2H3] alanines of biological interest is described. The stereochemistry of the reaction of the lithio derivative of (R)-(-)-2,5-dimethoxy-3-benzyl-3-methyl-3,6-dihydropyrazine with alkyl and deuterated alkyl iodides is discussed. The configuration of the newly formed center of chirality in (R)- and (S)-2-methyl-[3,3,3-2H3] alanines is derived from 1H NMR. 相似文献
15.
In studies where D-(-)-3-hydroxy[4,4,4-2H3]butyrate is employed as isotopic tracer in vivo, we have described a selected ion monitoring, gas-liquid chromatography-mass spectrometry micromethod which measures [2H3] tracer enrichment in 3-hydroxybutyrate and acetoacetate from 300-microliters blood samples. For plasma samples in the physiologic range, intra- and interassay precisions for each ketone averaged better than +/- 1% and +/- 2%, respectively. The use of the method was validated by comparing kinetic data obtained with the above tracer with simultaneous flux data obtained with conventional D-(-)-3-hydroxy[3-14C]butyrate tracer in five fasted rats. 相似文献
16.
P J van Bladeren S K Balani J M Sayer D R Thakker D R Boyd D E Ryan P E Thomas W Levin D M Jerina 《Biochemical and biophysical research communications》1987,145(1):160-167
The principal oxidative metabolites formed from benzo(c)phenanthrene (B(c)Ph) by the cytochromes P450 in liver microsomes from control and treated rats are the 3,4- and 5,6-arene oxides. A procedure is described which allows determination of the enantiomer composition and absolute configuration of these arene oxides based on HPLC separation of isomeric thiolate adducts formed with N-acetyl-L-cysteine in base. Incubation of [3H]-B(c)Ph with highly purified cytochrome P450c in a reconstituted monooxygenase system followed by trapping of the metabolically formed arene oxides as above indicated that the 3,4-oxide was predominantly the (+)-(3S,4R)-enantiomer (90%) and that the 5,6-oxide consisted mainly of the (+)-(5S,6R)-enantiomer (76%). The results are discussed in terms of their implications about the catalytic binding site of cytochrome P450c. 相似文献
17.
The methyltetrahydrofolate:corrinoid/iron-sulfur protein methyltransferase (MeTr) from Clostridium thermoacetium catalyzes transfer of the N5-methyl group of (6S)-methyltetrahydrofolate (CH3-H4folate) to the cob(I)amide center of a corrinoid/iron-sulfur protein (CFeSP), forming H4folate and methylcob(III)amide. We have investigated binding of 13C-enriched (6R,S)-CH3-H4folate and (6R)-CH3-H4folate to MeTr by 13C NMR, equilibrium dialysis, fluorescence quenching, and proton uptake experiments. The results described here and in the accompanying paper [Seravalli, J., Shoemaker, R. K., Sudbeck, M. J., and Ragsdale, S. W. (1999) Biochemistry 38, 5728-5735] constitute the first evidence for protonation of the pterin ring of CH3-H4folate. The pH dependence of the chemical shift in the 13C NMR spectrum for the N5-methyl resonance indicates that MeTr decreases the acidity of the N5 tertiary amine of CH3-H4folate by 1 pK unit in both water and deuterium oxide. Binding of (6R,S)-CH3H4folate is accompanied by the uptake of one proton. These results are consistent with a mechanism of activation of CH3-H4folate by protonation to make the methyl group more electrophilic and the product H4folate a better leaving group toward nucleophilic attack by cob(I)amide. When MeTr is present in excess over (6R,S)-13CH3-H4folate, the 13C NMR signal is split into two broad signals that reflect the bound states of the two diastereomers. This unexpected ability of MeTr to bind both isomers was confirmed by the observation of MeTr-bound (6R)-13CH3-H4folate by NMR and by the measurement of similar dissociation constants for (6R)- and (6S)-CH3-H4folate diastereomers by fluorescence quenching experiments. The transversal relaxation time (T2) of 13CH3-H4folate bound to MeTr is pH independent between pH 5.50 and 7.0, indicating that neither changes in the protonation state of bound CH3-H4folate nor the previously observed pH-dependent MeTr conformational change contribute to broadening of the 13C resonance signal. The dissociation constant for (6R,S)-CH3-H4folate is also pH independent, indicating that the role of the pH-dependent conformational change is to stabilize the transition state for methyl transfer, and not to favor the binding of CH3-H4folate. 相似文献
18.
Corinna Gröst Martin Gräber Michael Hell Thorsten Berg 《Bioorganic & medicinal chemistry》2013,21(23):7357-7363
Alexidine is in everyday human use as oral disinfectant and contact lens disinfectant. It is used as a mixture of stereoisomers. Since all of alexidine’s known biological targets are chiral, the biological activity of any of its chiral stereoisomers could be significantly higher than that of the mixture of stereoisomers. This makes a synthetic methodology for obtaining the individual enantiomers of the chiral diastereoisomer highly desirable. Here, we describe the first synthesis of both enantiomers of alexidine in high enantiomeric purity, and demonstrate their activity against the protein–protein interaction between the anti-apoptotic protein Bcl-xL and the pro-apoptotic protein Bak. 相似文献
19.
The ketone body ester (R)-3-hydroxybutyryl-(R)-3-hydroxybutyrate and its (S,S) enantiomer were prepared in a short, operationally simple synthetic sequence from racemic β-butyrolactone. Enantioselective hydrolysis of β-butyrolactone with immobilized Candida antarctica lipase-B (CAL-B) results in (R)-β-butyrolactone and (S)-β-hydroxybutyric acid, which are easily converted to (R) or (S)-ethyl-3-hydroxybutyrate and reduced to (R) or (S)-1,3 butanediol. Either enantiomer of ethyl-3-hydroxybutyrate and 1,3 butanediol are then coupled, again using CAL-B, to produce the ketone body ester product. This is an efficient, scalable, atom-economic, chromatography-free, and low cost synthetic method to produce the ketone body esters. 相似文献
20.
Saito Y Shinkai T Yoshimura Y Takahata H 《Bioorganic & medicinal chemistry letters》2007,17(21):5894-5896
A straightforward synthesis of meso-2,6-diaminopimelic acid (DAP) meso-1 was developed from 1,4-diacetoxycyclohept-2-ene (2) via an oxidative ring cleavage. Subsequently, an enantio-divergent synthesis of (S,S)- and (R,R)-1 was performed using a homochiral monoacetate 7 available from 2 by enzymatic desymmetrization. 相似文献