首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inductive signals mediating the differentiation of neural precursors into serotonergic (5-HT) or dopaminergic neurons have not been clarified. We have recently shown that in cell aggregates obtained from rat mesencephalic precursors, reduction of serotonin levels induces a marked increase in generation of dopaminergic neurons. In the present study we treated rat neurospheres with antagonists of the main subtypes of 5-HT receptors, 5-HT transport inhibitors, or 5-HT receptor agonists, and studied the effects on generation of dopaminergic neurons. Cultures treated with Methiothepin (5-HT(1,2,5,6,7) receptor antagonist), the 5-HT(4) receptor antagonist GR113808;67:00-.or the 5-HT(7) receptor antagonist SB 269970 showed a significant increase in generation of dopaminergic cells. Treatment with the 5-HT(1B/1D) antagonist GR 127935, the 5-HT(2) antagonist Ritanserin, the 5-HT transporter inhibitor Fluoxetine, the dopamine and norepinephrine transport inhibitor GBR 12935, or with both inhibitors together, or 5-HT(4) or 5-HT(7) receptor agonists induced significant decreases in generation of dopaminergic cells. Cultures treated with WAY100635 (5-HT(1A) receptor antagonist), the 5-HT(3) receptor antagonist Ondasetron, or the 5-HT(6) receptor antagonist SB 258585 did not show any significant changes. Therefore, 5-HT(4) and 5-HT(7) receptors are involved in the observed serotonin-induced decrease in generation of dopaminergic neurons from proliferating neurospheres of mesencephalic precursors. 5-HT(4) and 5-HT(7) receptors were found in astrocytes and serotonergic cells using double immunolabeling and laser confocal microscopy, and the glial receptors appeared to play a major role.  相似文献   

2.
3.
在74张大鼠下丘脑脑片上,用玻璃微电极记录到弓状核自发放电单位176个,其放电形式有三种:慢不规则型(119个,67.6%);快连续型(46个,26.1%);位相型(11个,6.3%)。5-HT(10-6mol/L,3min)对不同形式放电单位的作用均以抑制为主:对部分慢不规则单位(9/119)则表现为先抑制后兴奋的双相性反应,对少数神经元有兴奋作用。12个被5-HT抑制的单位,其抑制作用不能被噻庚啶(CHD,10-5mol/L)阻断,4个被5-HT抑制的的单位中,其抑制作用可被二甲基麦角新碱(MSG10-6mol/L)部分或完全阻断。7个被5-HT抑制的单位,其中4个单位中,5-HT的抑制作用可被特异性5-HT1A受体阻断剂Pindobind-5-HT1A部分阻断;但另外3个单位的阻断效果不明显。上述结果表明:5-HT对弓状核不同形式放电单位的作用均以抑制为主,其作用可能是通过5-羟色胺(5-HT1)受体介导的,部分还可能是通过5-HT1A受体介导的。  相似文献   

4.
Measurements of serotonin (5-HT), dopamine (DA), and noradrenaline, and of 5-HT and DA metabolites, were obtained by HPLC from 16 brain regions and the spinal cord of 5-HT(1A) or 5-HT(1B) knockout and wild-type mice of the 129/Sv strain. In 5-HT(1A) knockouts, 5-HT concentrations were unchanged throughout, but levels of 5-HT metabolites were higher than those of the wild type in dorsal/medial raphe nuclei, olfactory bulb, substantia nigra, and locus coeruleus. This was taken as an indication of increased 5-HT turnover, reflecting an augmented basal activity of midbrain raphe neurons and consequent increase in their somatodendritic and axon terminal release of 5-HT. It provided a likely explanation for the increased anxious-like behavior observed in 5-HT(1A) knockout mice. Concomitant increases in DA content and/or DA turnover were interpreted as the result of a disinhibition of DA, whereas increases in noradrenaline concentration in some territories of projection of the locus coeruleus could reflect a diminished activity of its neurons. In 5-HT(1B) knockouts, 5-HT concentrations were lower than those of the wild type in nucleus accumbens, locus coeruleus, spinal cord, and probably also several other territories of 5-HT innervation. A decrease in DA, associated with increased DA turnover, was measured in nucleus accumbens. These changes in 5-HT and DA metabolism were consistent with the increased aggressiveness and the supersensitivity to cocaine reported in 5-HT(1B) knockout mice. Thus, markedly different alterations in CNS monoamine metabolism may contribute to the opposite behavioral phenotypes of these two knockouts.  相似文献   

5.
The effects of microinfusingl-glutamate, serotonin (5-HT), (±)-8-hydroxy-2-(di-N-propylamino) tetralin (8-OH DPAT; a 5-HT1A agonist), and muscimol (a GABAA agonist) into the dorsal raphe nucleus on the extracellular levels of 5-HT, dopamine (DA) and their metabolites in the nucleus accumbens were studied in unanesthetized, freely moving, adult male Wistar rats, using the technique of microdialysis coupled with small-bore HPLC. Administration of 0.75 gl-glutamate produced a 25–50% increase (P<0.05) in the extracellular levels of both 5-HT and DA. On the other hand, infusion of 8-OH DPAT and, to a lesser extent, 5-HT produced a significant (P<0.05) decrease in the extracellular levels of both 5-HT and DA. Muscimol (0.25 or 0.50 g) had little effect on the extracellular concentrations of 5-HT or DA following its administration. In general, the extracellular levels of the major metabolites of 5-HT and DA in the nucleus accumbens were not altered by microinfusion of any of the agents. The data indicate that (a) the 5-HT neurons projecting to the nucleus accumbens from the dorsal raphe nucleus can be activated by excitatory amino acid receptors and inhibited by stimulation of 5-HT1A autoreceptors, and (b) the dorsal raphe nucleus 5-HT neuronal system may regulate the ventral tegmental area DA projection to the nucleus accumbens.Special issue dedicated to Dr. Morris H. Aprison  相似文献   

6.
Westberg  G.  Ahlman  H.  Nilsson  O.  Illerskog  A.  Wängberg  B. 《Neurochemical research》1997,22(8):977-983
Hormonal overproduction is a significant problem in patients with disseminated midgut carcinoid tumors. Serotonin (5-HT) is one major product secreted from such tumors and the urinary excretion of its metabolite (5-hydroxyindoleacetic acid, 5-HIAA) serves as an important tumor marker. The present study aimed at elucidating mechanisms of tryptophan metabolite secretion to facilitate the treatment of the carcinoid syndrome. When midgut carcinoid tumors were studied in primary cell cultures, several similarities with adrenergic neurons could be demonstrated. A marked dose-dependent depletion of intracellular 5-HT could be induced by reserpine, and monoamine oxidase-activity was revealed both in functional studies and by immunocytochemistry. Differences between tumors in the ratios of tryptophan metabolites released indicated that enzymes for synthesis and degradation of 5-HT were individually expressed. Treatment with the somatostatin analogue octreotide or with dexamethasone decreased the extracellular levels of tryptophan metabolites, but the mechanisms were partly different. In some tumors octreotide also decreased the synthesis of 5-HT, while dexamethasone markedly increased the intracellular 5-HIAA levels. It is of clinical interest to further elucidate these mechanisms, since the two drugs may have complementary actions in carcinoid crisis reactions.  相似文献   

7.
In recent years, there has been increasing evidence that serotonergic neurotransmission modulates a wide variety of experimentally induced seizures. Generally, agents that elevate extracellular serotonin (5-HT) levels, such as 5-hydroxytryptophan and serotonin reuptake blockers, inhibit both focal and generalized seizures, although exceptions have been described, too. Conversely, depletion of brain 5-HT lowers the threshold to audiogenically, chemically and electrically evoked convulsions. Furthermore, it has been shown that several anti-epileptic drugs increase endogenous extracellular 5-HT concentration. 5-HT receptors are expressed in almost all networks involved in epilepsies. Currently, the role of at least 5-HT(1A), 5-HT(2C), 5-HT(3) and 5-HT(7) receptor subtypes in epileptogenesis and/or propagation has been described. Mutant mice lacking 5-HT(1A) or 5-HT(2C) receptors show increased seizure activity and/or lower threshold. In general, hyperpolarization of glutamatergic neurons by 5-HT(1A) receptors and depolarization of GABAergic neurons by 5-HT(2C) receptors as well as antagonists of 5-HT(3) and 5-HT(7) receptors decrease the excitability in most, but not all, networks involved in epilepsies. Imaging data and analysis of resected tissue of epileptic patients, and studies in animal models all provide evidence that endogenous 5-HT, the activity of its receptors, and pharmaceuticals with serotonin agonist and/or antagonist properties play a significant role in the pathogenesis of epilepsies.  相似文献   

8.
A radioenzymatic procedure for the determination of sub-picomole amounts of 5-hydroxytryptamine (5-HT) is described. It is a modification of the method originally described by Saavedra et al. (1973), in which 5-HT was measured as the radiolabelled product [3H]5-methoxy-N- acetyltryptamine , after incubation with [3H]S-adenosylmethionine, acetyl-CoA, and the enzymes hydroxyindole-O-methyltransferase (EC 2.1.1.4) and N-acetyltransferase (EC 2.3.1.5). Ganglia from various gastropod molluscs (Aplysia californica, Tritonia diomedia , Lymnaea stagnalis, and Helisoma trivolvis ), as well as individual neuronal somata isolated from these ganglia, were assayed for 5-HT. Among the homologous giant cerebral cells in these animals, the 5-HT concentrations were similar. Statistical analysis of the 5-HT values in paired 5-HT-containing neurons demonstrated that the variability was considerably greater in samples obtained from different animals than in those obtained from the same animal. This suggests that experiments aimed at manipulating amine levels in individual neurons may benefit by using a paired-cell paradigm. The effects of incubating Aplysia ganglia with 5-HT or with the 5-HT precursors tryptophan and 5-hydroxytryptophan (5-HTP) were studied. High concentrations of 5-HTP and 5-HT (100 microM) increased the levels of 5-HT in ganglia, but only incubation in high concentrations of 5-HTP resulted in an increase of 5-HT in the isolated somata of 5-HT-containing neurons C1 and P5.  相似文献   

9.
Nicotine, one of the most widespread drugs of abuse, has long been shown to impact areas of the brain involved in addiction and reward. Recent research, however, has begun to explore the positive effects that nicotine may have on learning and memory. The mechanisms by which nicotine interacts with areas of cognitive function are relatively unknown. Therefore, this paper is part of an ongoing study to evaluate regional effects of nicotine enhancement of cognitive function. Nicotine-induced changes in the levels of three neurotransmitters, dopamine (DA), serotonin (5-HT), norepinepherine (NE), their metabolites, homovanillic acid (HVA), dihydroxyphenylacetic acid (DOPAC), 5-hydroxyindoleacetic acid (5-HIAA), and their precursor, L-DOPA, were evaluated in the ventral and dorsal hippocampus (VH and DH), prefrontal and medial temporal cortex (PFC and MTC), and the ventral tegmental area (VTA) using in vivo microdialysis in awake, freely moving, male Sprague-Dawley rats. The animals were treated with acute nicotine (0.5 mg/kg, s.c.) halfway through the 300-min experimental period. The reuptake blockers, desipramine (100 microM) and fluoxetine (30 microM), were given to increase the levels of NE and 5-HT so that they could be detected. Overall, a nicotine-induced DA increase was found in some areas, and this increase was potentiated by desipramine and fluoxetine. The two DA metabolites, HVA and DOPAC, increased in all the areas throughout the experiments, both with and without the inhibitors, indicating a rapid metabolism of the released DA. The increase in these metabolites was greater than the increase in DA. 5-HT was increased in the DH, MTC, and VTA in the presence of fluoxetine; its metabolite, 5-HIAA, was increased in the presence and absence of fluoxetine. Except in the VTA, NE levels increased to a similar extent with desipramine and fluoxetine. Overall, nicotine appeared to increase the release and turnover of these three neurotransmitters, which was indicated by significant increases in their metabolites. Furthermore, DA, and especially HVA and DOPAC, increased for the 150 min following nicotine administration; 5-HT and NE changes were shorter in duration. As gas chromatography experiments showed that nicotine levels in the brain decreased by 75% after 150 min, this may indicate that DA is more susceptible to lower levels of nicotine than 5-HT or NE. In conclusion, acute nicotine administration caused alterations in the levels of DA, 5-HT, and NE, and in the metabolism of DA and 5-HT, in brain areas that are involved in cognitive processes.  相似文献   

10.
Central serotonin (5-hydroxytryptamine, 5-HT) systems have been implicated in the pathophysiology and treatment of anxiety disorders, which are among the world's most prevalent psychiatric conditions. Here, we report that the 5-HT(2C) receptor (5-HT(2C)R) subtype is critically involved in regulating behaviors characteristic of anxiety using male 5-HT(2C)R knockout (KO) mice. Specific neural substrates underlying the 5-HT(2C)R KO anxiolytic phenotype were investigated, and we report that 5-HT(2C)R KO mice display a selective blunting of extended amygdala corticotropin-releasing hormone neuronal activation in response to anxiety stimuli. These findings illustrate a mechanism through which 5-HT(2C)Rs affect anxiety-related behavior and provide insight into the neural circuitry mediating the complex psychological process of anxiety.  相似文献   

11.
Serotonin (5-hydroxytryptamine, 5-HT) is a ubiquitous modulatory neurotransmitter with roles as a neurohormone and neurotransmitter. However, few studies have been performed characterizing this molecule and its related metabolites in circulating fluids. Here, we demonstrate native 5-HT sulfate, but much lower levels of 5-HT, in hemolymph of the marine mollusk Pleurobranchaea californica. The metabolite 5-HT sulfate forms from 5-HT uptake and metabolism in central ganglia of Aplysia californica and in the visceral nerve and eye of Pleurobranchaea, but not in hemolymph itself. In addition, 5-hydroxyindole acetic acid (5-HIAA), while not detected in hemolymph, forms in higher quantities than does 5-HT sulfate in the eye and visceral nerve, and gamma-glu-5-HT is also observed in this area but never in hemolymph. As systemic 5-HT sulfate appears not to originate from the optic region or from systemic 5-HT, 5-HT sulfate likely derives from the nervous system. Circulating 5-HT sulfate is at least 10-fold higher during the light portion of a 12 : 12-h light/dark cycle than during the dark portion (p < 0.0007), but there is no obvious trend for free systemic tryptophan (Trp) (p > 0.3) in Pleurobranchaea. 5-HT in mollusks is associated with general arousal state; thus, diurnal systemic changes in a 5-HT catabolite may reflect a regulatory role for indole catabolism in behavioral rhythms.  相似文献   

12.
Abstract: In vivo microdialysis in guinea pig hypothalamus was used to study the effect of serotonin [5-hydroxytryptamine (5-HT)] subtype 1D autoreceptor blockade on the increase in extracellular 5-HT levels produced by a selective 5-HT reuptake inhibitor (SSRI). Administration of the selective 5-HT1D antagonist GR127935 at 0.3 mg/kg had no effect, but 5 mg/kg significantly increased extracellular levels of 5-HT and 5-hydroxyindoleacetic acid to 135% of basal values. Moreover, at these doses GR127935 significantly attenuated the decrease in extracellular 5-HT levels following local perfusion with the selective 5-HT1D agonist CP-135,807. The SSRI sertraline at 2 mg/kg increased 5-HT levels to 130% of basal levels. The combination of this low dose of sertraline with either dose of GR127935 resulted in a pronounced, long-lasting increase in 5-HT levels to 230% of basal values. These results indicate that the effects of an SSRI on terminal 5-HT are significantly enhanced by coadministration of a 5-HT1D antagonist and confirm that in addition to somatodendritic 5-HT1A autoreceptors, terminal 5-HT1D autoreceptors mitigate the effect of SSRIs on terminal 5-HT. As such, antagonists of the 5-HT1D autoreceptor could be useful as rapidly acting antidepressants and may shorten the onset of antidepressant action when combined with SSRIs.  相似文献   

13.
To elucidate the central neural pathways contributing to the thermogenic component of the autonomic response to intravenous administration of leptin, experiments were conducted in urethane-chloralose-anesthetized, ventilated rats to address 1) the role of neurons in the rostral ventromedial medulla, including raphe pallidus (RPa), in the leptin-evoked stimulation of brown adipose tissue (BAT) sympathetic nerve activity (SNA); and 2) the potential thermolytic effect of 5-hydroxytryptamine(1A) (5-HT(1A)) receptors on RPa neurons that influence BAT thermogenesis. Leptin (1 mg/kg) administration increased BAT SNA by 1,219% of control, BAT temperature by 2.8 degrees C, expired CO(2) by 1.8%, heart rate by 90 beats/min, and mean arterial pressure by 12 mmHg. Microinjection of the 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) into RPa resulted in a prompt and sustained reversal of the leptin-evoked stimulation of BAT SNA, BAT thermogenesis, and heart rate, with these variables returning to their pre-leptin control levels. Subsequent microinjection of the selective 5-HT(1A) receptor antagonist WAY-100635 into RPa reversed the BAT thermolytic effects of 8-OH-DPAT, returning BAT SNA and BAT temperature to the elevated levels after leptin. In conclusion, activation of neurons in RPa, possibly BAT sympathetic premotor neurons, is essential for the increases in BAT SNA, BAT thermogenesis, and heart rate stimulated by intravenous administration of leptin. Neurons in RPa express 5-HT(1A) receptors whose activation leads to reversal of the BAT thermogenic and the cardiovascular responses to intravenous leptin, possibly through hyperpolarization of local sympathetic premotor neurons. These results contribute to our understanding of central neural substrates for the augmented energy expenditure stimulated by leptin.  相似文献   

14.
Inducing cellular dedifferentiation has been proposed as a potential method for enhancing endogenous regeneration in mammals. Here we demonstrate that phenotypic and functional neurons derived from adult rat bone marrow stromal stem cells (MSCs) can be induced to undergo dedifferentiation, then proliferation and redifferentiation. In addition to morphological changes and expression of neuronal markers, neuron-specific enolase and neurofilament H, functional differentiation was monitored by intracellular Ca2+ mobilization in response to a ubiquitous neurotransmitter, 5-hydroxytryptamine (5-HT) at different stages. The neurons derived from rMSCs were found to have increased 5-HT response. This 5-HT sensitivity could be reversed to basal level similar to that found in rMSCs when neurons, up to 3 days after neuronal induction, were induced to undergo dedifferentiation. Increase in 5-HT-induced Ca2+ mobilization was again observed when rMSCs derived from dedifferentiated neurons were induced to redifferentiate into neurons again. Variation in 5-HT1A receptor immunoreactivity was observed in stem cells, differentiated neurons, dedifferentiated neurons and redifferentiation neurons, consistent with their respective 5-HT sensitivity. These results suggest that adult bone marrow-derived 5-HT sensitive neurons are capable of dedifferentiation, then proliferation and redifferentiation, indicating their plasticity and potential use in treatment of neural degenerative diseases.  相似文献   

15.
Abstract: After a single intraperitoneal injection of the irreversible tryptophan hydroxylase inhibitor p -chlorophenylalanine (PCPA; 300 mg/kg), there was a rapid down-regulation of serotonin (5-HT) transporter mRNA levels in cell bodies. This change was significant at 1 and 2 days after PCPA administration within the ventromedial but not the dorsomedial portion of the dorsal raphe nucleus. Seven days after PCPA treatment, 5-HT transporter mRNA levels were significantly elevated compared with controls in both regions of the dorsal raphe nucleus. PCPA administration produced no change in the [3H]-citalopram binding and synaptosomal [3H]5-HT uptake in terminal regions at 2 and 7 days after treatment but significantly reduced both these parameters by ∼20% in the hippocampus and in cerebral cortex 14 days after PCPA administration. The striatum showed a lower sensitivity to this effect. No significant changes were observed in the levels of [3H]citalopram binding to 5-HT cell bodies in the dorsal raphe nucleus. In the same animals used for 5-HT transporter mRNA level measurements, levels of tryptophan hydroxylase mRNA in neurons of the ventromedial and dorsomedial portions of the dorsal raphe nucleus were increased 2 days after PCPA administration and fell to control levels 7 days after injection in the ventromedial region but not in the dorsomedial portion of the dorsal raphe nucleus, where they remained significantly higher than controls. Altogether, these results show that changes in 5-HT transporter mRNA are not temporally related to changes in 5-HT transporter protein levels. In addition, our results suggest that the 5-HT transporter and tryptophan hydroxylase genes are regulated by different mechanisms. We also provide further evidence that dorsal raphe 5-HT neurons are differentially regulated by drugs, depending on their location.  相似文献   

16.
Serotonin (or 5-hydroxytryptamine; 5-HT) and monoamine oxidase (MAO) are involved in several physiological functions and pathological conditions. We show that the serotonergic system and its development in zebrafish are similar to those of other vertebrates rendering zebrafish a good model to study them. Development of MAO expression followed a similar time course as the 5-HT system. MAO expression and activity were located in or adjacent to serotonergic nuclei and their targets, especially in the ventral hypothalamus. MAO mRNA was detected in the brain from 24 h post-fertilization and histochemical enzyme activity from 42 h post-fertilization. Deprenyl (100 μM) decreased MAO activity 34–74% depending on the age. Inhibition of MAO by deprenyl strongly increased 5-HT but not dopamine and noradrenaline levels. Deprenyl decreased 5-HT-immunoreactivity in serotonergic neurons and induced novel ectopic 5-HT-immunoreactivity neurons in the diencephalon in a manner dependent on 5-HT uptake. Deprenyl administration decreased locomotion, altered vertical positioning and increased heart rate. Treatment with p -chlorophenylalanine normalized 5-HT levels and rescued the behavioral alteration, indicating that the symptoms were 5-HT dependent. These findings suggest that zebrafish MAO resembles mammalian MAO A more than MAO B, metabolizing mainly 5-HT. Applications of this model of hyperserotonergism include pharmacological and genetic screenings.  相似文献   

17.
Serotonergic innervation of the spinal cord in mammals has multiple roles in the control of motor, sensory and visceral functions. In rats, functional consequences of spinal cord injury at thoracic level can be improved by a substitutive transplantation of serotonin (5-HT) neurons or regeneration under the trophic influence of grafted stem cells. Translation to either pharmacological and/or cellular therapies in humans requires the mapping of the spinal cord 5-HT innervation and its receptors to determine their involvement in specific functions. Here, we have performed a preliminary mapping of serotonergic processes and serotonin-lA (5-HT1A) receptors in thoracic and lumbar segments of the human spinal cord. As in rodents and non-human primates, 5-HT profiles in human spinal cord are present in the ventral horn, surrounding motoneurons, and also contact their presumptive dendrites at lumbar level. 5-HT1A receptors are present in the same area, but are more densely expressed at lumbar level. 5-HT profiles are also present in the intermediolateral region, where 5-HT1A receptors are absent. Finally, we observed numerous serotonergic profiles in the superficial part (equivalent of Rexed lamina II) of the dorsal horn, which also displayed high levels of 5-HT1A receptors. These findings pave the way for local specific therapies involving cellular and/or pharmacological tools targeting the serotonergic system.  相似文献   

18.
微电泳GABA和5-HT对大鼠丘脑束旁核单位痛放电的影响   总被引:3,自引:1,他引:2  
本实验用多管微电极细胞外记录和离子微电泳方法,在水含氯醛麻醉的SD大鼠上观察了γ-氨基丁酸(GABA)和5-羟色胺(5-HT)以及它们的受体阻断剂(印防已毒素和赛庚啶)对丘脑束旁核(Pf)单位痛放电的影响。结果表明:(1)电泳GABA可抑制Pf神经元的痛放电,这作用可被电泳印防已毒素所阻断,而单独电泳印防己毒素可加强Pf的痛放电。(2)电泳5-HT对Pf单位痛放电在有些单位表现加强作用,另一些单位表现抑制作用,仅前者可被电泳赛庚啶所阻断。上述结果提示:在Pf神经元的痛放电活动中,GABA可能起抑制性作用,而5-HT可能通过不同的受体亚型既发挥其兴奋作用,也可有抑制作用。  相似文献   

19.
We compared the changes in monoamines and their metabolites in the El mouse brain induced by GABA-A and GABA-B receptor agonists. Muscimol was used as a GABA-A receptor agonist, and baclofen as a GABA-B receptor agonist. Muscimol (3 mg/kg) significantly increased the DOPAC level in all parts of the mouse brain and the HVA level in the cortex, striatum, and midbrain. No significant change was observed in the dopamine (DA) level. These findings suggest that muscimol may accelerate both the synthesis and catabolism of DA. Baclofen (20 mg/kg) increased the DA level in the hippocampus and midbrain, and the DOPAC level in the hippocampus. Muscimol increased 5-HIAA levels and decreased 5-HT levels. This result suggests that 5-HT metabolism is accelerated by muscimol. No change in 5-HT or 5-HIAA levels was induced by baclofen. The GABA-A receptor system seems to have a potent effect not only on DA neurons, but on 5-HT neurons. However, the GABA-B receptor system appears to have almost no effect on 5-HT neurons, though it appears to have some effect on DA neurons.  相似文献   

20.
Many cost-benefit decisions reduce to simple choices between approach or avoidance (or active disregard) to salient stimuli. Physiologically, critical factors in such decisions are modulators of the homeostatic neural networks that bias decision processes from moment to moment. For the predatory sea-slug Pleurobranchaea, serotonin (5-HT) is an intrinsic modulatory promoter of general arousal and feeding. We correlated 5-HT actions on appetitive state with its effects on the approach-avoidance decision in Pleurobranchaea. 5-HT and its precursor 5-hydroxytryptophan (5-HTP) augmented general arousal state and reduced feeding thresholds in intact animals. Moreover, 5-HT switched the turn response to chemosensory stimulation from avoidance to orienting in many animals. In isolated CNSs, bath application of 5-HT both stimulated activity in the feeding motor network and switched the fictive turn response to unilateral sensory nerve stimulation from avoidance to orienting. Previously, it was shown that increasing excitation state of the feeding network reversibly switched the turn motor network response from avoidance to orienting, and that 5-HT levels vary inversely with nutritional state. A simple model posits a critical role for 5-HT in control of the turn network response by corollary output of the feeding network. In it, 5-HT acts as an intrinsic neuromodulatory factor coupled to nutritional status and regulates approach-avoidance via the excitation state of the feeding network. Thus, the neuromodulator is a key organizing element in behavioral choice of approach or avoidance through its actions in promoting appetitive state, in large part via the homeostatic feeding network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号