首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of Lactococcus strains to inhibit the growth of intestinal bacteria was examined. In in vitro cocultures, we observed that among eighteen Lactococcus strains tested, the ability to inhibit growth of Escherichia coli varied, with the L. lactis N7 showing the greatest growth inhibition. Strain N7 (8.94x1010 CFU/day for 7 days) was orally administered to mice, and the viable count of strain N7 in feces appeared at a level of 104-5 CFU/g. After administration, the proportion of Bacteroidaceae to total intestinal bacteria decreased. Lactococci may act as probiotic bacteria by inhibiting the growth of harmful bacteria.  相似文献   

2.
Few studies exist dealing with the probiotic activity of lactococci, which are commonly used as starter bacteria in the manufacture of many kinds of fermented dairy products. Fifteen strains of the genus Lactococcus were examined for their probiotic activities, such as immunomodulatory effects. Six strains induced the production of cytokines (IL-12, IL-6, and TNF-alpha) in macrophage-like cell line J774.1, and the highest induction was observed with Lactococcus lactis subsp. lactis G50. The cytokine induction in the J774.1 cell line was almost entirely sustained after heat-killing of the strain. Spleen cells from BALB/c mice fed G50 culture produced more IL-12 and IFN-gamma and slightly less IL-4 and IL-6 than the control (i.e., without strain G50), indicating that strain G50 can enhance Th1-type immune response in vivo. The effect of the oral administration of strain G50 on antibody response in mice was also investigated. Mice were immunized with ovomucoid (OVM), a potent egg allergen, and the antibody level in the serum was then determined. The total IgE antibody level in the group treated with strain G50 was significantly lower than that of the control. The response of OVM-specific IgG1 and IgE antibodies tended to be low in the group that was administered strain G50, compared with the response of the control group. These results suggest that strain G50 has an ability to suppress the Th2 response. Thus, Lactococcus lactis subsp. lactis G50 is a potential probiotic strain for the suppression of hypersensitive reactions caused by the Th2 response.  相似文献   

3.
Proline, which is the most abundant residue in beta-casein, stimulates growth of Lactococcus lactis in a proline-requiring strain (Lactococcus lactis subsp. cremoris Wg2) and in a proline-prototrophic strain (Lactococcus lactis subsp. lactis ML3). Both strains lack a proline-specific uptake system, and free proline can enter the cell only by passive diffusion across the cytoplasmic membrane. On the other hand, lactococci can actively take up proline-containing peptides via the lactococcal di- and tripeptide transport system, and these peptides are the major source of proline. Consequently, lactococcal growth on amino acid-based media is highly stimulated by the addition of proline-containing di- and tripeptides. Growth of L. lactis subsp. lactis ML3 on chemically defined media supplemented with casein does not appear proline limited. Addition of dipeptides (including proline-containing peptides) severely inhibits growth on a casein-containing medium, which indicates that the specific growth rate is determined by the balanced supply of different di- or tripeptides which compete for the same di- and tripeptide transport system.  相似文献   

4.
Aims:  We compared phenotypic characteristics of Lactococcus lactis subsp. lactis derived from different sources including the intestinal tract of marine fish and freshwater fish, and cheese starter culture.
Methods and Results:  In the phylogenetic analysis based on partial 16S rRNA gene nucleotide sequences (1371 bp), freshwater fish-, marine fish- and cheese starter culture-derived strains were identical to that of L. lactis subsp. lactis previously reported. Fermentation profiles determined using the API 50 CH system were similar except for fermentation of several sugars including l -arabinose, mannitol, amygdalin, saccharose, trehalose, inulin and gluconate. The strains did have distinct levels of halotolerance: marine fish-derived strains > cheese starter-derived strain > freshwater fish-derived isolate.
Conclusions:  Lactococcus lactis subsp. lactis showed extensive diversity in phenotypic adaptation to various environments. The phenotypic properties of these strains suggested that L. lactis subsp. lactis strains from fish intestine have additional functions compared with the cheese starter-derived strain that has previously described.
Significance and Impact of the Study:  The unique phenotypic traits of the fish intestinal tract-derived L. lactis subsp. lactis might make them useful as a probiotics in aquaculture, and contribute to the development of functional foods and novel food additives, since the strains derived from fish intestines might have additional functions such as antibacterial activity.  相似文献   

5.
Diversity among lactococci isolated from ewes' raw milk and cheese   总被引:1,自引:0,他引:1  
P. GAYA, M. BABÍN, M. MEDINA and M. NUÑEZ.1999.The technological and genetic characteristics of lactococci present in ewes' raw milk and 1-d-old ewes' raw milk cheeses sampled over a 1-year period were investigated. The proportion of lactic acid bacteria isolates from milk samples able to decrease milk pH by more than 1·25 units after 6 h incubation at 30 °C reached 14·5% in spring vs 10·7% in summer, 8·3% in autumn and 3·0% in winter. In 1-d-old cheese samples, the proportion of lactic acid bacteria able to lower milk pH by more than 1·25 units increased up to 32·3% in spring vs 23·4% in summer, 8·0% in autumn and 10·3% in winter. Fast acid-producing lactic acid bacteria mainly belonged to the genus Lactococcus . Using polymerase chain reaction protocols, fast acid-producing lactococci were grouped as 61  Lactococcus lactis subsp. lactis , 13  L. lactis subsp. cremoris and 14  L. lactis subsp. lactis biovar diacetylactis. Randomly amplified polymorphic DNA (RAPD) fingerprinting of fast acid-producing lactococci, using two primers, resulted in 21 different RAPD patterns for L. lactis subsp. lactis isolates, nine RAPD patterns for L. lactis subsp. cremoris isolates and three RAPD patterns for L. lactis subsp. lactis biovar diacetylactis isolates. Up to 19 different RAPD patterns were found for L. lactis isolates from cheeses made in a particular month.  相似文献   

6.
Four lactobacilli strains (Lactobacillus bulgaricus, Lactobacillus acidophilus, Lactobacilus casei and Lactobacillus reuteri) were grown in MRS broth and three lactococci strains (Streptococcus thermophilus, Lactococcus lactis subsp. Lactis and Lactococcus lactis subsp. lactis biovar. diacetilactis) were grown in M17 broth. L. reuteri and S. thermophilus were chosen on the basis of the best mean beta-galactosidase activity of 10.44 and 10.01 U/ml respectively, for further studies on permeate-based medium. The maximum production of beta-galactosidase by L. reuteri was achieved at lactose concentration of 6%, initial pH 5.0-7.5, ammonium phosphate as nitrogen source at a concentration of 0.66 g N/L and incubation temperature at 30 degrees C/24 hrs to give 6.31 U/ml. While in case of S. thermophilus, maximum beta-galactosidase production was achieved at 10% lactose concentration of permeate medium, supplemented with phosphate buffer ratio of 0.5:0.5 (KH2PO4:K2HPO4, g/L), at initial pH 6.0-6.5, ammonium phosphate (0.66g N/L) as nitrogen source and incubation temperature 35 degrees C for 24 hrs to give 7.85 U/ml.  相似文献   

7.
H Holo  O Nilssen    I F Nes 《Journal of bacteriology》1991,173(12):3879-3887
A new bacteriocin, termed lactococcin A (LCN-A), from Lactococcus lactis subsp. cremoris LMG 2130 was purified and sequenced. The polypeptide contained no unusual amino acids and showed no significant sequence similarity to other known proteins. Only lactococci were killed by the bacteriocin. Of more than 120 L. lactis strains tested, only 1 was found resistant to LCN-A. The most sensitive strain tested, L. lactis subsp. cremoris NCDO 1198, was inhibited by 7 pM LCN-A. By use of a synthetic DNA probe, lcnA was found to be located on a 55-kb plasmid. The lcnA gene was cloned and sequenced. The sequence data revealed that LCN-A is ribosomally synthesized as a 75-amino-acid precursor including a 21-amino-acid N-terminal extension. An open reading frame encoding a 98-amino-acid polypeptide was found downstream of and in the same operon as lcnA. We propose that this open reading frame encodes an immunity function for LCN-A. In Escherichia coli lcnA did not cause an LCN-A+ phenotype. L. lactis subsp. lactis IL 1403 produced small amounts of the bacteriocin and became resistant to LCN-A after transformation with a recombinant plasmid carrying lcnA. The other lactococcal strains transformed with the same recombinant plasmid became resistant to LCN-A but did not produce any detectable amount of the bacteriocin.  相似文献   

8.
Aims:  Genotypic and technological characterization of wild lactococci isolated from artisanal Manchego cheese during the ripening process for selection of suitable starter cultures.
Methods and Results:  A total of 114 isolates of lactococci were typed using randomly amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). Sixteen distinct RAPD-PCR patterns, at a similarity level of 73%, were obtained. On the basis of species-specific PCR reaction, the isolates were assigned to the species Lactococcus lactis subsp. lactis and Lactococcus lactis subsp. cremoris with L. lactis subsp. lactis being predominant at both dairies. Twenty-six isolates were technologically characterized to select those with the best properties. Most of them showed good technological properties although some could produce tyramine.
Conclusions:  The presence of coincident genotypes at both dairies has been demonstrated, which would suggest that they are well adapted to the Manchego cheese environment. Interesting differences were found in the technological characterization and the potential role of autochthonous lactococci strains as starter culture has been displayed.
Significance and Impact of the Study:  The great economic importance of Manchego cheese encouraged a deeper knowledge of its microbiota, to select strains with the best properties to use as starter cultures in industrial Manchego cheeses, preserving the autochthonous characteristics.  相似文献   

9.
Evidence is presented that lactose-fermenting ability (Lac+) in Lactococcus lactis subsp. cremoris AM1, SK11, and ML1 is associated with plasmid DNA, even though these strains are difficult to cure of Lac plasmids. When the Lac plasmids from these strains were introduced into L. lactis subsp. lactis LM0230, they appeared to replicate in a thermosensitive manner; inheritance of the plasmid was less efficient at 32 to 40 degrees C than at 22 degrees C. The stability of the L. lactis subsp. cremoris Lac plasmids in lactococci appeared to be a combination of both host and plasmid functions. Stabilized variants were isolated by growing the cultures at 32 to 40 degrees C; these variants contained the Lac plasmids integrated into the L. lactis subsp. lactis LM0230 chromosome. In addition, the presence of the L. lactis subsp. cremoris Lac plasmids in L. lactis subsp. lactis resulted in a temperature-sensitive growth response; growth of L. lactis subsp. lactis transformants was significantly inhibited at 38 to 40 degrees C, thereby resembling some L. lactis subsp. cremoris strains with respect to temperature sensitivity of growth.  相似文献   

10.
Evidence is presented that lactose-fermenting ability (Lac+) in Lactococcus lactis subsp. cremoris AM1, SK11, and ML1 is associated with plasmid DNA, even though these strains are difficult to cure of Lac plasmids. When the Lac plasmids from these strains were introduced into L. lactis subsp. lactis LM0230, they appeared to replicate in a thermosensitive manner; inheritance of the plasmid was less efficient at 32 to 40 degrees C than at 22 degrees C. The stability of the L. lactis subsp. cremoris Lac plasmids in lactococci appeared to be a combination of both host and plasmid functions. Stabilized variants were isolated by growing the cultures at 32 to 40 degrees C; these variants contained the Lac plasmids integrated into the L. lactis subsp. lactis LM0230 chromosome. In addition, the presence of the L. lactis subsp. cremoris Lac plasmids in L. lactis subsp. lactis resulted in a temperature-sensitive growth response; growth of L. lactis subsp. lactis transformants was significantly inhibited at 38 to 40 degrees C, thereby resembling some L. lactis subsp. cremoris strains with respect to temperature sensitivity of growth.  相似文献   

11.
Defined starter systems, consisting of bacteriocin-tolerant Lactococcus lactis subsp. lactis H6 alone or in combination with bacteriocin-sensitive L. lactis subsp. cremoris H1, and low amounts of a bacteriocin-producing culture, were developed and used for the manufacture of semi-hard cheese. Aminopeptidase activity and proteolysis were increased and acidification retarded in cheeses made from milk inoculated with lactococci and the bacteriocin-producing culture with respect to cheeses from milk inoculated with only lactococci. Cheeses made with a defined-strain starter system consisting of L. lactis subsp. lactis H6 and the bacteriocin-producing culture received the highest scores for flavour intensity and quality.  相似文献   

12.
Nisin-resistant Leuconostoc mesenteroides NCK293 and nisin-producing Lactococcus lactis subsp. lactis NCK401 were evaluated separately and in combination for growth and nisin production in a model sauerkraut fermentation. Strains were genetically marked and selectively enumerated by using antibiotic-containing media. The growth and survival of L. mesenteroides were similar in the presence and absence of Lactococcus lactis subsp. lactis. The growth of Lactococcus lactis subsp. lactis was not inhibited, although the maximum cell density was reduced and the population decline was more pronounced in the presence of L. mesenteroides. Nisin was detected within 24 h, and levels were relatively constant over the 12-day test period. The maximum cell populations and nisin level achieved could be altered by changing the initial cell ratios of L. mesenteroides and lactococcus lactis subsp. lactis. Isogenic nisin-producing and nisin-negative Lactococcus lactis subsp. lactis derivatives were used in combination with nisin-resistant L. mesenteroides to demonstrate that nisin levels produced in mixed culture were sufficient to retard the onset of the growth of nisin-sensitive, homofermentative Lactobacillus plantarum ATCC 14917.  相似文献   

13.
Two distinct forms of phosphoglucomutase were found in Lactococcus lactis subsp. lactis, strains 19435 and 65.1, growing on maltose: beta-phosphoglucomutase (beta-PGM), which catalyzes the reversible conversion of beta-glucose 1-phosphate to glucose 6-phosphate in the maltose catabolism, and alpha-phosphoglucomutase (alpha-PGM). beta-PGM was purified to more than 90% homogeneity in crude cell extract from maltose-grown lactococci, and polyclonal antisera to the enzyme were prepared. The molecular mass of beta-PGM was estimated by gel filtration to be 28 kDa; its isoelectric point was 4.8. The corresponding values for alpha-PGM were 65 kDa and 4.4, respectively. The expression of both PGM enzymes was investigated under different growth conditions. The specific activity and amount of beta-PGM per milliliter of cell extract increased with time in lactococci grown on maltose, but the enzyme was absent in lactococci grown on glucose, indicating enzyme synthesis to be induced by maltose in the growth medium. When glucose was added to maltose-grown lactococci, both the specific activity and amount of beta-PGM per milliliter of cell extract decreased rapidly. This suggests that synthesis of beta-PGM is repressed by glucose in the medium. Although the specific activity of alpha-PGM did not change during growth on maltose or glucose, lactococcal strain 19435 showed a much higher specific activity of both alpha- and beta-PGM than strain 65.1 when grown on maltose.  相似文献   

14.
Nisin-resistant Leuconostoc mesenteroides NCK293 and nisin-producing Lactococcus lactis subsp. lactis NCK401 were evaluated separately and in combination for growth and nisin production in a model sauerkraut fermentation. Strains were genetically marked and selectively enumerated by using antibiotic-containing media. The growth and survival of L. mesenteroides were similar in the presence and absence of Lactococcus lactis subsp. lactis. The growth of Lactococcus lactis subsp. lactis was not inhibited, although the maximum cell density was reduced and the population decline was more pronounced in the presence of L. mesenteroides. Nisin was detected within 24 h, and levels were relatively constant over the 12-day test period. The maximum cell populations and nisin level achieved could be altered by changing the initial cell ratios of L. mesenteroides and lactococcus lactis subsp. lactis. Isogenic nisin-producing and nisin-negative Lactococcus lactis subsp. lactis derivatives were used in combination with nisin-resistant L. mesenteroides to demonstrate that nisin levels produced in mixed culture were sufficient to retard the onset of the growth of nisin-sensitive, homofermentative Lactobacillus plantarum ATCC 14917.  相似文献   

15.
Strains of mesophilic lactococci and lactobacilli isolated from goats' milk cheese were grown to maximum density in milk at 30°C, pH 6·5. They were subsequently cooled to 12°C and then heated at 50°, 52° and 54°C (holding time, 15 s). The micro-organisms tested were Lactococcus lactis subsp. lactis IFPL 60, IFPL 22 and IFPL 359, Lactobacillus casei subsp. casei IFPL 731 and Lactobacillus plantarum IFPL 3, isolated from raw goats' milk cheese. The heated cells presented lower viability and acidification capacity than unheated cells. After heat treatment at 50°C, all the test strains effected practically no reduction in pH of milk (6 h), except for Lactococcus lactis subsp. lactis IFPL 60, which reduced pH to 5·9 as compared to 4·9 attained by the unheated controls. After treatment, proteolytic, aminopeptidase and dipeptidase activities of cell-free extracts decreased to a lesser extent than the number of viable cells with acidifying ability. The results suggest that these strains, if treated at 50°C, may be suitable as extra sources of important ripening enzymes in cheese making.  相似文献   

16.
Xylose metabolism, a variable phenotype in strains of Lactococcus lactis, was studied and evidence was obtained for the accumulation of mutations that inactivate the xyl operon. The xylose metabolism operon (xylRAB) was sequenced from three strains of lactococci. Fragments of 4.2, 4.2, and 5.4 kb that included the xyl locus were sequenced from L. lactis subsp. lactis B-4449 (formerly Lactobacillus xylosus), L. lactis subsp. lactis IO-1, and L. lactis subsp. lactis 210, respectively. The two environmental isolates, L. lactis B-4449 and L. lactis IO-1, produce active xylose isomerases and xylulokinases and can metabolize xylose. L. lactis 210, a dairy starter culture strain, has neither xylose isomerase nor xylulokinase activity and is Xyl(-). Xylose isomerase and xylulokinase activities are induced by xylose and repressed by glucose in the two Xyl(+) strains. Sequence comparisons revealed a number of point mutations in the xylA, xylB, and xylR genes in L. lactis 210, IO-1, and B-4449. None of these mutations, with the exception of a premature stop codon in xylB, are obviously lethal, since they lie outside of regions recognized as critical for activity. Nevertheless, either cumulatively or because of indirect affects on the structures of catalytic sites, these mutations render some strains of L. lactis unable to metabolize xylose.  相似文献   

17.
S Morgan  R P Ross    C Hill 《Applied microbiology》1995,61(8):2995-3001
Lactococcus lactis subsp. lactis biovar diacetylactis DPC938 was identified as a bacteriocin-producing strain which exhibited a bacteriolytic effect on other lactococci. Lysis of such target strains was associated with decreases in optical density and release of the intracellular enzyme lactate dehydrogenase. DPC938 exhibits cross-immunity to L. lactis subsp. cremoris 9B4 (M.J. van Belkum, B.J. Hayema, A. Geis, J. Kok, and G. Venema, Appl. Environ. Microbiol. 55:1187-1191, 1989), a strain which produces the bacteriocins lactococcins A, B, and M. Genetic analyses revealed that a 15.5-kb region of DNA encoding these bacteriocins is highly conserved in 9B4, DPC938, and DPC3286, an overproducing derivative of DPC938. This region is located on a 72- and a 78-kb nonmobilizable plasmid in DPC938 and DPC3286, respectively. The bacteriolytic effect exhibited by DPC938 and DPC3286 on sensitive cultures is most probably due to the concerted action of all three bacteriocins. Since these cultures exhibit a lytic effect on lactococci, they have a potential application in the dairy industry as accelerators of starter lysis and hence accelerators of cheese ripening.  相似文献   

18.
AIMS: This work was carried out to study the acid production by Lactococcus lactis subsp. lactis strains isolated from goat's milk and goat cheese (Valdeteja variety) in order to select a suitable starter culture for industrial goat cheese manufacturing. METHODS AND RESULTS: The titrable acidity of 45 Lactococcus lactis subsp. lactis strains isolated from a home-made batch of Valdeteja cheese with excellent sensory characteristics was measured over a period of 18 h. The strains were divided into two groups depending on the acid production rate: 20 fast acid producer (F) strains and 25 slow acid producer (S) strains. The kinetic parameters (lag phase, maximum acid production rate and value of upper asymptote curve) of the acid production curves for F and S strains were significantly (P < 0.001) different. CONCLUSIONS: Significant (P < 0.001) differences between titrable acidity of F and S strains were observed after the second hour of incubation. SIGNIFICANCE AND IMPACT OF THE STUDY: An F strain acetoin producer (Lactococcus lactis subsp. lactis 470Ch2) was selected as autochthonous starter culture for industrial Valdeteja goat cheese manufacturing.  相似文献   

19.
One hundred and twenty (120) strains of lactic acid bacteria (LAB) were enumerated and isolated from raw dromedary milk in Morocco using various cultured media. Strains isolated were characterized by phenotypic, physiological and biochemical properties. Results showed that high counts of LAB were found. Presumptive lactobacilli counts ranged from 2.5x10(2) to 6x10(7)cfu/ml, presumptive lactococci levels varied from 5x10(2) to 6x10(7)cfu/ml, presumptive streptococci counts varied from 4.2x10(2) to 8x10(7)cfu/ml, presumptive leuconostoc levels ranged from 5.4x10(2) to 5.4x10(7)cfu/ml. Results showed also that Lactobacillus and Lactococcus were the predominant genera with 37.5% and 25.8%, respectively. The dominated species found were Lactococcus lactis subsp. lactis (17.5%), Lactobacillus helveticus (10%), Streptococcus salivarius subsp. thermophilus (9.20%), Lactobacillus casei subsp. casei (5.80%) and Lactobacillus plantarum (5%). This is the first report on the characterization of LAB strains isolated from the one humped camel milk produced in Morocco.  相似文献   

20.
Multicopy plasmids that contained the complete of 3'-deleted forms of the proteinase (prtP) gene of Lactococcus lactis subsp. cremoris SK11 under the control of different promoters were constructed and introduced into Prt- lactococcal strains. The production and location of the SK11 proteinase was determined in different hosts grown in industrial and laboratory media. In spite of the 10-fold-higher copy number of the prt genes, no overproduction of proteinase was observed in strain SK1128, a Prt- derivative of L. lactis subsp. cremoris SK112. In contrast, an approximately threefold overproduction of the cell envelope-located or fully secreted proteinase was found in strain MG1820 compared with that of its parental strain L. lactis subsp. lactis SH4109. In all strains proteinase production appeared to be regulated by the medium composition. Highest proteinase production of the SK11 derivatives was found in milk, in contrast to derivatives of SH4109 that produced most proteinase in whey permeate medium. Analysis of single strains with different levels of proteinase production or mixed cultures containing various ratios of Prt+ and Prt- cells indicated that the amount of proteinase produced per cell or culture determines the specific growth rate in milk. Overproduction of cell envelope-located or secreted proteinase in strain MG1820 resulted in a 20%-higher specific growth and acidification rate in milk compared with that in the wild-type strain SH4109. These results indicate that the growth of lactococci in milk is limited by the caseinolytic activity of the proteinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号