首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Constraints on inorganic carbon (C(i)) availability stimulated buoyancy in natural, photosynthetically active populations of the colonial blue-green alga (cyanobacterium) Microcystis aeruginosa. In nonmixed eutrophic river water and cultures, O(2) evolution determinations indicated C(i) limitation of photosynthesis, which was overcome either by CO(2) additions to the aqueous phase or by exposure of buoyant colonies to atmospheric CO(2). Microautoradiographs of M. aeruginosa colonies revealed partitioning of CO(2) fixation and photosynthate accumulation between peripheral and internal cells, particularly in large colonies. When illuminated colonies were suspended in the aqueous phase, peripheral cells accounted for at least 90% of the CO(2) assimilation, whereas internal cells remained unlabeled. However, when CO(2) was allowed to diffuse into colonies 15 min before illumination, a more uniform distribution of labeling was observed. Resultant differences in labeling patterns were most likely due to peripheral cells more exclusively utilizing CO(2) when ambient C(i) concentrations were low. Among colonies located at the air-water interface, internal cells showed an increased share of photosynthate production when atmospheric CO(2) was supplied. This indicated that C(i) transport was restricted in large colonies below the water surface, forcing internal cells to maintain a high degree of buoyancy, thus promoting the formation of surface scums. At the surface, C(i) restrictions were alleviated. Accordingly, scum formation appears to have an ecological function, allowing cyanobacteria access to atmospheric CO(2) when the C(i) concentration is growth limiting in the water column.  相似文献   

2.
In high inorganic carbon grown (1% CO2 [volume/volume]) cells of the cyanobacterium Synechococcus PCC7942, the carbonic anhydrase (CA) inhibitor, ethoxyzolamide (EZ), was found to inhibit the rate of CO2 uptake and to reduce the final internal inorganic carbon (Ci) pool size reached. The relationship between CO2 fixation rate and internal Ci concentration in high Ci grown cells was little affected by EZ. This suggests that in intact cells internal CA activity was unaffected by EZ. High Ci grown cells readily took up CO2 but had little or no capacity for HCO3 uptake. These cells appear to possess a CO2 utilizing Ci pump that has a CA-like function associated with the transport step such that HCO3 is the species delivered to the cell interior. This CA-like step may be the site of inhibition by EZ. Low Ci grown cells possess both CO2 uptake and HCO3 uptake activities and EZ inhibited both activities to a similar degree, suggesting that a common step in CO2 and HCO3 uptake (such as the Ci pump) may have been affected. The inhibitor had no apparent effect on internal CO2/HCO3 equilibria (internal CA function) in low Ci grown cells.  相似文献   

3.
Cells of a high CO2-requiring mutant (E1) and wild type of Synechococcus PCC7942 were incubated with COS in the light, then suspended in COS-free medium and their CO2 exchange was measured using an open gas-analysis system under the conditions where photosynthetic CO2 fixation is inhibited. When the suspension of cells untreated with COS was illuminated, the rate of CO2 uptake was high and addition of carbonic anhydrase during illumination released a large amount of CO2 from the medium into the gas phase. The COS treatment in the light markedly reduced the rate of CO2 uptake by the cells and the amount of CO2 released by carbonic anhydrase. Incubation of cells with COS in the dark had no effect on the CO2-exchange profile. The COS concentration required for 50% inhibition of CO2 uptake was about 25 micromolar when the concentration of inorganic carbon (Ci) in the medium was 60 micromolar; higher Ci concentrations reduced the inhibitory effect of COS. Measurement of Ci uptake in E1 cells by a silicone oil centrifugation method also indicated marked reduction of the activities of 14CO2 and H14CO3 uptake in the cells treated with COS in the light. The results demonstrated that COS is a potent inhibitor of Ci transport.  相似文献   

4.
The pathway and kinetics of photosynthate unloading in developing seeds of bean (Phaseolus vulgaris L.) were investigated using steady-state labeling with 14CO2. The continuous assimilation of 14CO2 at constant specific activity produced stable tracer fluxes that facilitated straightforward analyses of photosynthate import and unloading in developing seeds. The kinetics of tracer equilibration within intact seeds were compatible with a symplastic route of photosynthate unloading in the seed coat. The import and partitioning of tracer within seeds were partially disrupted by the surgical excision of the distal halves of seeds as practiced during the preparation of “empty” seed coats for perfusion.  相似文献   

5.
A total of 24 high CO2-requiring-mutants of the cyanobacterium Synechococcus PCC7942 have been isolated and partially characterized. These chemically induced mutants are able to grow at 1% CO2, on agar media, but are incapable of growth at air levels of CO2. All the mutants were able to accumulate inorganic carbon (Ci) to levels similar to or higher than wild type cells, but were apparently unable to generate intracellular CO2. On the basis of the rate of Ci release following a light (5 minutes) → dark transition two extreme phenotypes (fast and slow release mutants) and a number of `intermediate' mutants (normal release) were identified. Compared to wild-type cells, Type I mutants had the following characteristics: fast Ci release, normal internal Ci pool, normal carbonic anhydrase (CA) activity in crude extracts, reduced internal exchange of 18O from 18O-labeled CO2, 1% CO2 requirement for growth in liquid media, normal affinity of carboxylase for CO2, and long, rod-like carboxysomes. Type II mutants had the following characteristics: slow Ci release, increased internal Ci pool, normal CA activity in crude extracts, normal internal 18O exchange, a 3% CO2 requirement for growth in liquid media, high carboxylase activity, normal affinity of carboxylase for CO2, and normal carboxysome structure but increased in numbers per cell. Both mutant phenotypes appear to have genetic lesions that result in an inability to convert intracellular HCO3 to CO2 inside the carboxysome. The features of the type I mutants are consistent with a scenario where carboxysomal CA has been mistargeted to the cytosol. The characteristics of the type II phenotype appear to be most consistent with a scenario where CA activity is totally missing from the cell except for the fact that cell extracts have normal CA activity. Alternatively the type II mutants may have a lesion in their capacity for H+ import during photosynthesis.  相似文献   

6.
Inorganic carbon (Ci) uptake was measured in wild-type cells of Chlamydomonas reinhardtii, and in cia-3, a mutant strain of C. reinhardtii that cannot grow with air levels of CO2. Both air-grown cells, that have a CO2 concentrating system, and 5% CO2-grown cells that do not have this system, were used. When the external pH was 5.1 or 7.3, air-grown, wild-type cells accumulated inorganic carbon (Ci) and this accumulation was enhanced when the permeant carbonic anhydrase inhibitor, ethoxyzolamide, was added. When the external pH was 5.1, 5% CO2-grown cells also accumulated some Ci, although not as much as air-grown cells and this accumulation was stimulated by the addition of ethoxyzolamide. At the same time, ethoxyzolamide inhibited CO2 fixation by high CO2-grown, wild-type cells at both pH 5.1 and 7.3. These observations imply that 5% CO2-grown, wild-type cells, have a physiologically important internal carbonic anhydrase, although the major carbonic anhydrase located in the periplasmic space is only present in air-grown cells. Inorganic carbon uptake by cia-3 cells supported this conclusion. This mutant strain, which is thought to lack an internal carbonic anhydrase, was unaffected by ethoxyzolamide at pH 5.1. Other physiological characteristics of cia-3 resemble those of wild-type cells that have been treated with ethoxyzolamide. It is concluded that an internal carbonic anhydrase is under different regulatory control than the periplasmic carbonic anhydrase.  相似文献   

7.
A 42-kilodalton cytoplasmic membrane protein is synthesized when high CO2-grown cells of Synechococcus PCC 7942 (Anacystis nidulans R2) are exposed to low CO2. The structural gene for this protein (cmpA) has been cloned and sequenced and shown to encode a 450 amino acid polypeptide with a molecular mass of 49 kilodalton. A deletion mutant lacking the 42-kilodalton protein was obtained by transformation of Synechococcus PCC 7942 following in vitro mutagenesis of the cloned gene. There were no significant differences between the mutant and wild-type cells in their growth rates under either low or high CO2 conditions. The activity of inorganic carbon (Ci) transport in the mutant was as high as that in the wild-type strain. In both types of cells, CO2 was the main species of Ci transported and the activities of CO2 and HCO3 transport increased when high CO2-grown cells were exposed to low CO2. We conclude that the 42-kilodalton protein is not directly involved in the Ci-accumulating mechanism of Synechococcus PCC 7942.  相似文献   

8.
Cells of the cyanobacterium, Synechococcus PCC7942, grown under high inorganic carbon (Ci) conditions (1% CO2; pH 8) were found to be photosynthetically dependent on exogenous CO2. This was judged by the fact that they had a similar photosynthetic affinity for CO2 (K0.5[CO2] of 3.4-5.4 micromolar) over the pH range 7 to 9 and that the low photosynthetic affinity for Ci measured in dense cell suspensions was improved by the addition of exogenous carbonic anhydrase (CA). The CA inhibitor, ethoxyzolamide (EZ), was shown to reduce photosynthetic affinity for CO2 in high Ci cells. The addition of 200 micromolar EZ to high Ci cells increased K0.5(CO2) from 4.6 micromolar to more than 155 micromolar at pH 8.0, whereas low Ci cells (grown at 30 microliters CO2 per liter of air) were less sensitive to EZ. EZ inhibition in high and low Ci cells was largely relieved by increasing exogenous Ci up to 100 millimolar. Lipid soluble CA inhibitors such as EZ and chlorazolamide were shown to be the most effective inhibitors of CO2 usage, whereas water soluble CA inhibitors such as methazolamide and acetazolamide had little or no effect. EZ was found to cause a small drop in photosystem II activity, but this level of inhibition was not sufficient to explain the large effect that EZ had on CO2 usage. High Ci cells of Anabaena variabilis M3 and Synechocystis PCC6803 were also found to be sensitive to 200 micromolar EZ. We discuss the possibility that the inhibitory effect of EZ on CO2 usage in high Ci cells of Synechococcus PCC7942 may be due to inhibition of a `CA-like' function associated with the CO2 utilizing Ci pump or due to inhibition of an internal CA activity, thus affecting CO2 supply to ribulose bisphosphate carboxylase-oxygenase.  相似文献   

9.
The unicellular green alga Chlamydomonas reinhardtii possesses a CO2-concentrating mechanism. In order to measure the CO2 permeability coefficients of the plasma membranes (PMs), carbonic anhydrase (CA) loaded vesicles were isolated from C. reinhardtii grown either in air enriched with 50 mL CO2 · L?1} (high-Ci cells) or in ambient air (350 μL CO2 · L?1}; low-Ci cells). Marker-enzyme measurements indicated less than 1% contamination with thylakoid and mitochondrial membranes, and that more than 90% of the PMs from high and low-Ci cells were orientated right-side-out. The PMs appeared to be sealed as judged from the ability of vesicles to accumulate [14C]acetate along a proton gradient for at least 10 min. Carbonic anhydrase-loaded PMs from high and low-Ci cells of C. reinhardtii were used to measure the exchange of 18O between doubly labelled CO2 (13C18O2) and H2O in stirred suspensions by mass spectrometry. Analysis of the kinetics of the 18O depletion from 13C18O2 in the external medium provides a powerful tool to study CO2 diffusion across the PM to the active site of CA which catalyses 18O exchange only inside the vesicles but not in the external medium (Silverman et al., 1976, J Biol Chem 251: 4428–4435). The activity of CA within loaded PM vesicles was sufficient to speed-up the 18O loss to H2O to 45360–128800 times the uncatalysed rate, depending on the efficiency of CA-loading and PM isolation. From the 18O-depletion kinetics performed at pH 7.3 and 7.8, CO2 permeability coefficients of 0.76 and 1.49·10?3} cm·s?1}, respectively, were calculated for high Ci cells. The corresponding values for low-Ci cells were 1.21 and 1.8·10?3} cm·s?1}. The implications of the similar and rather high CO2 permeability coefficients (low CO2 resistance) in high and low-Ci cells for the COi-concentrating mechanism of C. reinhardtii are discussed.  相似文献   

10.
Our aim was to determine whether fixation of inorganic carbon (Ci), due to phosphoenolpyruvate carboxylase activity, is limited by the availability of Ci in the cytoplasm of maize (Zea mays L.) root tips. Rates of Ci uptake and metabolism were measured during K2SO4 treatment, which stimulates dark Ci fixation. 13Ci uptake was followed by 13C-nuclear magnetic resonance (NMR); 5 millimolar K2SO4 had no significant effect on 13Ci influx. The contribution of respiratory CO2 production to cytoplasmic HCO3 was measured using in vivo 13C-NMR and 1H-NMR of cell extracts; K2SO4 treatment had no effect on respiratory CO2 production. The concentration of cytoplasmic HCO3 was estimated to be approximately 11 millimolar, again with K2SO4 having no significant effect. These experiments allowed us to determine the extent to which extracellularly supplied 14Ci was diluted in the cytoplasm by respiratory CO2 and thereby measure phosphoenolpyruvate (PEP) carboxylase activity in vivo using 14Ci. PEP carboxylase activity in root tips was enhanced approximately 70% over controls within 12 minutes of the addition of 5 millimolar K2SO4. The activity of carbonic anhydrase, which provides PEP carboxylase with Ci, was determined by saturation transfer 13C-NMR to be more than 200 times that of PEP carboxylase in vivo. The regulation of PEP carboxylase in K2SO4-treated roots is discussed.  相似文献   

11.
Intact cells and crude homogenates of high (1% CO2) and low dissolved inorganic carbon (Ci) (30-50 microliters per liter of CO2) grown Synechococcus PCC7942 have carbonic anhydrase (CA)-like activity, which enables them to catalyze the exchange of 18O from CO2 to H2O. This activity was studied using a mass spectrometer coupled to a cuvette with a membrane inlet system. Intact high and low Ci cells were found to contain CA activity, separated from the medium by a membrane which is preferentially permeable to CO2. This activity is most apparent in the light, where 18O-labeled CO2 species are being taken up by the cells but the effluxing CO2 has lost most of its label to water. In the dark, low Ci cells catalyze the depletion of the 18O enrichment of CO2 and this activity is inhibited by both ethoxyzolamide and 2-(trifluoromethoxy)carbonyl cyanide. This may occur via a common inhibition of the Ci pump and the Ci pump is proposed as a potential site for the exchange of 18O. CA activity was measurable in homogenates of both cell types but was 5- to 10-fold higher in low Ci cells. This was inhibited by ethoxyzolamide with an I50 of 50 to 100 micromolar in both low and high Ci cells. A large proportion of the internal CA activity appears to be pelletable in nature. This pelletability is increased by the presence of Mg2+ in a manner similar to that of ribulose bisphosphate carboxylase-oxygenase activity and chlorophyll (thylakoids) and may be the result of nonspecific aggregation. Separation of crude homogenates on sucrose gradients is consistent with the notion that CA and ribulose bisphosphate carboxylase-oxygenase activity may be associated with the same pelletable fraction. However, we cannot unequivocally establish that CA is located within the carboxysome. The sucrose gradients show the presence of separate soluble and pelletable CA activity. This may be due to the presence of separate forms of the enzyme or may arise from the same pelletable association which is unstable during extraction.  相似文献   

12.
Light-dependent inorganic C (Ci) transport and accumulation in air-grown cells of Synechococcus UTEX 625 were examined with a mass spectrometer in the presence of inhibitors or artificial electron acceptors of photosynthesis in an attempt to drive CO2 or HCO3 uptake separately by the cyclic or linear electron transport chains. In the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea, the cells were able to accumulate an intracellular Ci pool of 20 mm, even though CO2 fixation was completely inhibited, indicating that cyclic electron flow was involved in the Ci-concentrating mechanism. When 200 μm N,N-dimethyl-p-nitrosoaniline was used to drain electrons from ferredoxin, a similar Ci accumulation was observed, suggesting that linear electron flow could support the transport of Ci. When carbonic anhydrase was not present, initial CO2 uptake was greatly reduced and the extracellular [CO2] eventually increased to a level higher than equilibrium, strongly suggesting that CO2 transport was inhibited and that Ci accumulation was the result of active HCO3 transport. With 3-(3,4-dichlorophenyl)-1,1-dimethylurea-treated cells, Ci transport and accumulation were inhibited by inhibitors of CO2 transport, such as COS and Na2S, whereas Li+, an HCO3-transport inhibitor, had little effect. In the presence of N,N-dimethyl-p-nitrosoaniline, Ci transport and accumulation were not inhibited by COS and Na2S but were inhibited by Li+. These results suggest that CO2 transport is supported by cyclic electron transport and that HCO3 transport is supported by linear electron transport.  相似文献   

13.
Active human carbonic anhydrase II (HCAII) protein was expressed in the cyanobacterium Synechococcus PCC7942 by means of transformation with the bidirectional expression vector, pCA. This expression was driven by the bacterial Tac promoter and was regulated by the IacIQ repressor protein, which was expressed from the same plasmid. Expression levels reached values of around 0.3% of total cell protein and this protein appeared to be entirely soluble in nature and located within the cytosol of the cell. The expression of this protein has dramatic effects on the photosynthetic physiology of the cell. Induction of expression of carbonic anhydrase (CA) activity in both high dissolved inorganic carbon (Ci) and low Ci grown cells leads the creation of a high Ci requiring phenotype causing: (a) a dramatic increase in the K0.5 (Ci) for photosynthesis, (b) a loss of the ability to accumulate internal Ci, and (c) a decrease in the lag between the initial Ci accumulation following illumination and the efflux of CO2 from the cells. In addition, the effects of the expressed CA can largely be reversed by the carbonic anhydrase inhibitor ethoxyzolamide. As a result of the above findings, it is concluded that the CO2 concentrating mechanism in Synechococcus PCC7942 is largely dependent on (a) the absence of CA activity from the cytosol, and (b) the specific localization of CA activity in the carboxysome. A theoretical model of photosynthesis and Ci accumulation is developed in which the carboxysome plays a central role as both the site of CO2 generation from HCO3 and a resistance barrier to CO2 efflux from the cell. There is good qualitative agreement between this model and the measured physiological effects of expressed cytosolic CA in Synechococcus cells.  相似文献   

14.
Kagawa T  Wong JH 《Plant physiology》1985,77(2):266-274
The allocation and turnover of photosynthetically assimilated 14CO2 in lipid and protein fractions of soybean (Glycine max L. Clark) leaves and stem materials was measured. In whole plant labeling experiments, allocation of photosynthate from a pulse of 14CO2 into polymeric compounds was: 25% to proteins in 4 days, 20% to metabolically inert cell wall products in 1 to 2 days, 10% to lipids in 4 days, and 4% to starch in 1 day. The amount of 14C labeled photosynthate that an actively growing leaf (leaf 4) used for its own lipid synthesis immediately following pulse labeling was about 25%. The 14C of labeled proteins turned over with half-lives of 3.8, 3.3, and 4.1 days in leaves 1, 2, and 3, respectively; and turnover of 14C in total shoot protein proceeded with a half-life of 5.2 days. Three kinetic 14C turnover patterns were observed in lipids: a rapid turnover fraction (within a day), an intermediate fraction (half-life about 5 days), and a slow turnover fraction. These results are discussed in terms of previously published accounts of translocation, carbon budgets, carbon use, and turnover in starch, lipid, protein, and cell wall materials of various plants including soybeans.  相似文献   

15.
We sought to characterize the inorganic carbon pool (CO2 plus HCO3) formed in the leaves of C4 plants when C4 acids derived from CO2 assimilation in mesophyll cells are decarboxylated in bundle sheath cells. The size and kinetics of labeling of this pool was determined in six species representative of the three metabolic subgroups of C4 plants. The kinetics of labeling of the inorganic carbon pool of leaves photosynthesizing under steady state conditions in 14CO2 closely paralleled those for the C-4 carboxyl of C4 acids for all species tested. The inorganic carbon pool size, determined from its 14C content at radioactivity saturation, ranged between 15 and 97 nanomoles per milligram of leaf chlorophyll, giving estimated concentrations in bundle sheath cells of between 160 and 990 micromolar. The size of the pool decreased, together with photosynthesis, as light was reduced from 900 to 95 microeinsteins per square meter per second or as external CO2 was reduced from 400 to 98 microliters per liter. A model is developed which suggests that the inorganic carbon pool existing in the bundle sheath cells of C4 plants during steady state photosynthesis will comprise largely of CO2; that is, CO2 will only partially equlibrate with bicarbonate. This predominance of CO2 is believed to be vital for the proper functioning of the C4 pathway.  相似文献   

16.

Background and Aims

Stomatal density (SD) generally decreases with rising atmospheric CO2 concentration, Ca. However, SD is also affected by light, air humidity and drought, all under systemic signalling from older leaves. This makes our understanding of how Ca controls SD incomplete. This study tested the hypotheses that SD is affected by the internal CO2 concentration of the leaf, Ci, rather than Ca, and that cotyledons, as the first plant assimilation organs, lack the systemic signal.

Methods

Sunflower (Helianthus annuus), beech (Fagus sylvatica), arabidopsis (Arabidopsis thaliana) and garden cress (Lepidium sativum) were grown under contrasting environmental conditions that affected Ci while Ca was kept constant. The SD, pavement cell density (PCD) and stomatal index (SI) responses to Ci in cotyledons and the first leaves of garden cress were compared. 13C abundance (δ13C) in leaf dry matter was used to estimate the effective Ci during leaf development. The SD was estimated from leaf imprints.

Key Results

SD correlated negatively with Ci in leaves of all four species and under three different treatments (irradiance, abscisic acid and osmotic stress). PCD in arabidopsis and garden cress responded similarly, so that SI was largely unaffected. However, SD and PCD of cotyledons were insensitive to Ci, indicating an essential role for systemic signalling.

Conclusions

It is proposed that Ci or a Ci-linked factor plays an important role in modulating SD and PCD during epidermis development and leaf expansion. The absence of a Ci–SD relationship in the cotyledons of garden cress indicates the key role of lower-insertion CO2 assimilation organs in signal perception and its long-distance transport.  相似文献   

17.
The nature of photosynthetic acclimation to elevated CO2 is evaluated from the results of over 40 studies focusing on the effect of long-term CO2 enrichment on the short-term response of photosynthesis to intercellular CO2 (the A/Ci response). The effect of CO2 enrichment on the A/Ci response was dependent on growth conditions, with plants grown in small pots (< 5 L) or low nutrients usually exhibiting a reduction of A at a given Ci, while plants grown without nutrient deficiency in large pots or in the field tended to exhibit either little reduction or an enhancement of A at a given Ci following a doubling or tripling of atmospheric CO2 during growth. Using theoretical interpretations of A/Ci curves to assess acclimation, it was found that when pot size or nutrient deficiency was not a factor, changes in the shape of A/Ci curves which are indicative of a reallocation of resources within the photosynthetic apparatus typically were not observed. Long-term CO2 enrichment usually had little effect or increased the value of A at all Ci. However, a minority of species grown at elevated CO2 exhibited gas exchange responses indicative of a reduced amount of Rubisco and an enhanced capacity to metabolize photosynthetic products. This type of response was considered beneficial because it enhanced both photosynthetic capacity at high CO2 and reduced resource investment in excessive Rubisco capacity. The ratio of intercellular to ambient CO2 (the Ci/Ca ratio) was used to evaluate stomatal acclimation. Except under water and humidity stress, Ci/Ca exhibited no consistent change in a variety of C3 species, indicating no stomatal acclimation. Under drought or humidity stress, Ci/Ca declined in high-CO2 grown plants, indicating stomata will become more conservative during stress episodes in future high CO2 environments.Abbreviations A net CO2 assimilation rate - Ci (Ca) intercellular (ambient) partial pressure of CO2 - operational Ci intercellular partial pressure of CO2 at a given ambient partial pressure of CO2 - gs stomatal conductance - normal CO2 current atmospheric mole fraction of CO2 (330 to 355 mol mol–1) - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase  相似文献   

18.
Using a combination of gas-exchange and chlorophyll fluorescence measurements, low apparent CO2/O2 specificity factors (1300 mol mol?1) were estimated for the leaves of two deciduous tree species (Fagus sylvatica and Castanea sativa). These low values contrasted with those estimated for two herbaceous species and were ascribed to a drop in the CO2 mole fraction between the intercellular airspace (Ci) and the catalytic site of Rubisco (Cc) due to internal resistances to CO2 transfer. Cc. was calculated assuming a specificity of Rubisco value of 2560 mol mol?1. The drop between Ci and Cc was used to calculate the internal conductance for CO2 (gi). A good correlation between mean values of net CO2 assimilation rate (A) and gi was observed within a set of data obtained using 13 woody plant species, including our own data. We report that the relative limitation of A, which can be ascribed to internal resistances to CO2 transfer, was 24–30%. High internal resistances to CO2 transfer may explain the low apparent maximal rates of carboxylation and electron transport of some woody plant species calculated from A/Ci curves.  相似文献   

19.
Cyanobacterial cells accumulate substantial amounts of a membrane-associated 42 kilodalton polypeptide during adaptation to low CO2 conditions. The role of this polypeptide in the process of adaptation and in particular in the large increase in the ability to accumulate inorganic carbon (Ci), which accompanies this process, is not yet understood. We have isolated a mutant Synechococcus PCC7942 that does not accumulate the 42 kilodalton polypeptide. The mutant requires a high-CO2 concentration for growth and exhibits a very low apparent photosynthetic affinity for extracellular Ci. The latter might be attributable to the observed defective ability of the mutant to utilize the intracellular Ci pool for photosynthesis. The 42 kilodalton polypeptide does not appear to participate directly in the active transport of Ci, since the difference between the observed capabilities for CO2 and HCO3 uptake of the mutant and the wild type is not sufficient to account for their different growth and photosynthetic performance. Furthermore, high CO2-grown wild-type cells, where we could not detect the 42 kilodalton polypeptide, transported CO2 faster than the mutant. An analysis of the curves relating the rate of accumulation of Ci to the concentration of CO2 or HCO3 supplied, in the presence or absence of carbonic anhydrase, indicated that under the experimental conditions used here, CO2 was the preferred Ci species taken up by Synechococcus.  相似文献   

20.
Omata T  Ogawa T 《Plant physiology》1986,80(2):525-530
When cells of Anacystis nidulans strain R2 grown under high CO2 conditions (3%) were transferred to low CO2 conditions (0.05%), their ability to accumulate inorganic carbon (Ci) increased up to 8 times. Cytoplasmic membranes (plasmalemma) isolated at various stages of low CO2 adaptation were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. There was a marked increase of a 42-kilodalton polypeptide in the cytoplasmic membrane during adaptation; a linear relationship existed between the amount of this polypeptide and the Ci-accumulating capability of the cells. No significant changes were observed during this process in the amount of other polypeptides in the cytoplasmic membranes or in the polypeptide profiles of the thylakoid membranes, cell walls, and soluble fractions. Spectinomycin, an inhibitor of protein biosynthesis, inhibited both the increase of the 42-kilodalton polypeptide and the induction of high Ci-accumulating capability. The incorporation of [35S]sulfate into membrane proteins was greatly reduced during low CO2 adaptation. Radioautograms of the 35S-labeled membrane proteins revealed that synthesis of the 42-kilodalton polypeptide in the cytoplasmic membrane was specifically activated during the adaptation, while that of most other proteins was greatly suppressed. These results suggested that the 42-kilodalton polypeptide in the cytoplasmic membrane is involved in the active Ci transport by A. nidulans strain R2 and its synthesis under low CO2 conditions leads to high Ci-transporting activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号