首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Physiological stress associated with muscle damage results in systemic insulin resistance. However, the mechanisms responsible for the insulin resistance are not known; therefore, the present study was conducted to elucidate the molecular mechanisms associated with insulin resistance after muscle damage. Muscle biopsies were obtained before (base) and at 1 h during a hyperinsulinemic-euglycemic clamp (40 mU x kg(-1) x min(-1)) in eight young (age 24+/-1 yr) healthy sedentary (maximal O(2) consumption, 49.7+/-2.4 ml x kg(-1) x min(-1)) males before and 24 h after eccentric exercise (ECC)-induced muscle damage. To determine the role of cytokines in ECC-induced insulin resistance, venous blood samples were obtained before (control) and 24 h after ECC to evaluate ex vivo endotoxin-induced mononuclear cell secretion of tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, and IL-1beta. Glucose disposal was 19% lower after ECC (P<0.05). Insulin-stimulated insulin receptor substrate (IRS)-1 tyrosine phosphorylation was 45% lower after ECC (P<0.05). Insulin-stimulated phosphatidylinositol (PI) 3-kinase, Akt (protein kinase B) serine phosphorylation, and Akt activity were reduced 34, 65, and 20%, respectively, after ECC (P < 0.05). TNF-alpha, but not IL-6 or IL-1beta production, increased 2.4-fold 24 h after ECC (P<0.05). TNF-alpha production was positively correlated with reduced insulin action on PI 3-kinase (r = 0.77, P = 0.04). In summary, the physiological stress associated with muscle damage impairs insulin stimulation of IRS-1, PI 3-kinase, and Akt-kinase, presumably leading to decreased insulin-mediated glucose uptake. Although more research is needed on the potential role for TNF-alpha inhibition of insulin action, elevated TNF-alpha production after muscle damage may impair insulin signal transduction.  相似文献   

2.
Recent studies have demonstrated that fatty acids induce insulin resistance in skeletal muscle by blocking insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase (PI3-kinase). To examine the mechanism by which fatty acids mediate this effect, rats were infused with either a lipid emulsion (consisting mostly of 18:2 fatty acids) or glycerol. Intracellular C18:2 CoA increased in a time-dependent fashion, reaching an approximately 6-fold elevation by 5 h, whereas there was no change in the concentration of any other fatty acyl-CoAs. Diacylglycerol (DAG) also increased transiently after 3-4 h of lipid infusion. In contrast there was no increase in intracellular ceramide or triglyceride concentrations during the lipid infusion. Increases in intracellular C18:2 CoA and DAG concentration were associated with protein kinase C (PKC)-theta activation and a reduction in both insulin-stimulated IRS-1 tyrosine phosphorylation and IRS-1 associated PI3-kinase activity, which were associated with an increase in IRS-1 Ser(307) phosphorylation. These data support the hypothesis that an increase in plasma fatty acid concentration results in an increase in intracellular fatty acyl-CoA and DAG concentrations, which results in activation of PKC-theta leading to increased IRS-1 Ser(307) phosphorylation. This in turn leads to decreased IRS-1 tyrosine phosphorylation and decreased activation of IRS-1-associated PI3-kinase activity resulting in decreased insulin-stimulated glucose transport activity.  相似文献   

3.
For over 10 years, we have known that the activation of the mammalian target of rapamycin complex 1 (mTORC1) has correlated with the increase in skeletal muscle size and strength that occurs following resistance exercise. Initial cell culture and rodent models of muscle growth demonstrated that the activation of mTORC1 is common to hypertrophy induced by growth factors and increased loading. The further observation that high loads increased the local production of growth factors led to the paradigm that resistance exercise stimulates the autocrine production of factors that act on membrane receptors to activate mTORC1, and this results in skeletal muscle hypertrophy. Over the last few years, there has been a paradigm shift. From both human and rodent studies, it has become clear that the phenotypic and molecular responses to resistance exercise occur in a growth factor-independent manner. Although the mechanism of load-induced mTORC1 activation remains to be determined, it is clear that it does not require classical growth factor signaling.  相似文献   

4.
The purpose of this study was to determine the separate and combined effects of exercise and insulin on the activation of phosphatidylinositol 3-kinase (PI3-kinase) and glycogen synthase in human skeletal muscle in vivo. Seven healthy men performed three trials in random order. The trials included 1) ingestion of 2 g/kg body wt carbohydrate in a 10% solution (CHO); 2) 75 min of semirecumbent cycling exercise at 75% of peak O(2) consumption; followed by 5 x 1-min maximal sprints (Ex); and 3) Ex, immediately followed by ingestion of the carbohydrate solution (ExCHO). Plasma glucose and insulin were increased (P < 0.05) at 15 and 30 (Post-15 and Post-30) min after the trial during CHO and ExCHO, although insulin was lower for ExCHO. Hyperinsulinemia during recovery in CHO and ExCHO led to an increase (P < 0.001) in PI3-kinase activity at Post-30 compared with basal, although the increase was lower (P < 0. 004) for ExCHO. Furthermore, PI3-kinase activity was suppressed (P < 0.02) immediately after exercise (Post-0) during Ex and ExCHO. Area under the insulin response curve for all trials was positively associated with PI3-kinase activity (r = 0.66, P < 0.001). Glycogen synthase activity did not increase during CHO but was increased (P < 0.05) at Post-0 and Post-30 during Ex and ExCHO. Ingestion of the drink increased (P < 0.05) carbohydrate oxidation during CHO and ExCHO, although the increase after ExCHO was lower (P < 0.05) than CHO. Carbohydrate oxidation was directly correlated with PI3-kinase activity for all trials (r = 0.63, P < 0.001). In conclusion, under resting conditions, ingestion of a carbohydrate solution led to activation of the PI3-kinase pathway and oxidation of the carbohydrate. However, when carbohydrate was ingested after intense exercise, the PI3-kinase response was attenuated and glycogen synthase activity was augmented, thus facilitating nonoxidative metabolism or storage of the carbohydrate. Activation of glycogen synthase was independent of PI3-kinase.  相似文献   

5.
Hickey, Matthew S., Charles J. Tanner, D. Sean O'Neill,Lydia J. Morgan, G. Lynis Dohm, and Joseph A. Houmard. Insulin activation of phosphatidylinositol 3-kinase in human skeletal muscle invivo. J. Appl. Physiol. 83(3):718-722, 1997.The purpose of this investigation was to determinewhether insulin-stimulated phosphatidylinositol 3-kinase (PI3-kinase)activity is detectable in needle biopsies of human skeletal muscle.Sixteen healthy nonobese males matched for age, percent fat, fastinginsulin, and fasting glucose participated in one of two experimentalprotocols. During an intravenous glucose tolerance test (IVGTT)protocol, insulin-stimulated PI3-kinase activity was determined frompercutaneous needle biopsies at 2, 5, and 15 min post-insulinadministration (0.025 U/kg). In the second group, a 2-h, 100 mU · m2 · min1euglycemic hyperinsulinemic clamp was performed, and biopsies wereobtained at 15, 60, and 120 min after insulin infusion was begun.Insulin stimulated PI3-kinase activity by 1.6 ± 0.2-, 2.2 ± 0.3-, and 2.2 ± 0.4-fold at 2, 5, and 15 min, respectively, duringthe IVGTT. During the clamp protocol, PI3-kinase was elevated by 5.3 ± 1.3-, 8.0 ± 2.6-, and 2.7 ± 1.4-fold abovebasal at 15, 60, and 120 min, respectively. Insulin-stimulatedPI3-kinase activity at 15 min post-insulin administration wassignificantly greater during the clamp protocol vs. the IVGTT(P < 0.05). These observations suggest that insulin-stimulated PI3-kinase activity is detectable inneedle biopsies of human skeletal muscle, and furthermore, that theeuglycemic, hyperinsulinemic clamp protocol may be a useful tool toassess insulin signaling in vivo.

  相似文献   

6.
A hallmark of skeletal muscle atrophy is increased activities of several proteolytic systems, including caspase-3. We have previously shown that conditions involving insulin deficiency or insulin resistance increase both overall protein degradation and caspase-3-mediated actin cleavage. In the present experiments, we examined how insulin regulates caspase-3 activity in L6 myotubes. Reducing the serum concentration in the culture media from 2 to 0.5% overnight increased caspase-3 activity and actin cleavage. Addition of insulin to proteolytically active cells attenuated both responses within 4 h. Individually, inhibitors of either phosphatidylinositide 3-kinase (PI3K) or MEK1/2 partially blocked the insulin-induced reduction in caspase-3 activity; in combination, the inhibitors completely prevented insulin from attenuating caspase-3 activity. Insulin suppressed caspase-3 activity by a complex mechanism that included direct inhibition due to an increased interaction between caspase-3 and cellular inhibitor of apoptosis-1 and indirect inhibition via phosphorylation (i.e., inactivation) of the proapoptotic protein Bad, which participates in the intrinsic (i.e., mitochondrial) apoptosis activation cascade. Unlike other cell types, the phosphorylation of Bad Ser112 was mediated by the PI3K/Akt pathway rather than the MEK/ERK/ribosomal S6 protein kinase pathway. In summary, our findings indicate that insulin regulates caspase-3 activity by a multistep process that is unique to skeletal muscle, thus providing insights about the muscle-specific nature of the atrophy process.  相似文献   

7.
High ethanol intake is considered to impair insulin sensitivity. In the present study, we investigated the acute and chronic effects of ethanol intake on glucose metabolism and insulin signal transduction. Hyperinsulinemic-euglycemic clamp studies revealed 70% and 51% decreases in the glucose infusion rate, 52% and 31% decreases in the glucose utilization rate, and 6.6- and 8.0-fold increases in hepatic glucose in continuous- and acute-ethanol-loaded rats, respectively. Despite the presence of insulin resistance, alcohol-fed rats showed enhanced tyrosine phosphorylation of insulin receptors, IRS-1 and IRS-2, induced by insulin injection via the portal vein. PI 3-kinase activities associated with IRSs and phosphotyrosine also increased significantly as compared with those of controls. These data suggest ethanol intake to be a factor leading to insulin resistance, regardless of whether it is a single or continuous intake. In addition, the insulin signaling step impaired by ethanol feeding is likely to be downstream from PI 3-kinase.  相似文献   

8.
Effect of exercise on insulin action in human skeletal muscle   总被引:10,自引:0,他引:10  
The effect of 1 h of dynamic one-legged exercise on insulin action in human muscle was studied in 6 healthy young men. Four hours after one-legged knee extensions, a three-step sequential euglycemic hyperinsulinemic clamp combined with arterial and bilateral femoral vein catheterization was performed. Increased insulin action on glucose uptake was found in the exercised compared with the rested thigh at mean plasma insulin concentrations of 23, 40, and 410 microU/ml. Furthermore, prior contractions directed glucose uptake toward glycogen synthesis and increased insulin effects on thigh O2 consumption and at some insulin concentrations on potassium exchange. In contrast, no change in insulin effects on limb exchange of free fatty acids, glycerol, alanine or tyrosine were found after exercise. Glycogen concentration in rested vastus lateralis muscle did not increase measurably during the clamp even though indirect estimates indicated net glycogen synthesis. In contrast, in exercised muscle estimated and biopsy-verified increases in muscle glycogen concentration agreed. Local contraction-induced increases in insulin sensitivity and responsiveness play an important role in postexercise recovery of human skeletal muscle.  相似文献   

9.
Insulin produces an influx of Ca(2+) into isolated rat hepatocyte couplets that is important to couple its tyrosine kinase receptor to MAPK activity (Benzeroual et al., Am. J. Physiol. 272, (1997) G1425-G1432. In the present study, we have examined the implication of Ca(2+) in the phosphorylation state of the insulin receptor (IR) beta-subunit and of insulin receptor substrate-1 (IRS-1), as well as in the stimulation of PI 3-kinase activity in cultured hepatocytes. External Ca(2+) chelation (EGTA 4 mM) or administration of Ca(2+) channel inhibitors gadolinium 50 microM or nickel 500 microM inhibited insulin-induced PI 3-kinase activation by 85, 50 and 50%, respectively, whereas 200 microM verapamil was without effect. In contrast, the insulin-induced tyrosine phosphorylation of IR beta-subunit and of IRS-1 was not affected by any of the experimental conditions. Our data demonstrate that the stimulation of PI 3-kinase activity by the activated insulin receptor, but not the phosphorylation of IR beta-subunit and IRS-1, requires an influx of Ca(2+). Ca(2+) thus appears to play an important role as a second messenger in insulin signaling in liver cells.  相似文献   

10.
Leucine (Leu) is known to stimulate translation initiation of protein synthesis at mammalian target of rapamycin (mTOR) in the insulin signaling pathway. However, potential feedback from mTOR to upstream aspects of the insulin signaling pathway remains controversial. This study evaluates the impact of a physiological oral dose of Leu and/or carbohydrate (CHO) on upstream elements of the insulin signaling pathway using phosphatidylinositol 3-kinase (PI 3-kinase) activity and glucose uptake as markers for insulin sensitivity and glucose homeostasis. Rats (approximately 200 g) were fasted 12 h and administered oral doses of CHO (1.31 g glucose, 1.31 g sucrose), Leu (270 mg), or CHO plus Leu. Animals were killed at 15, 30, 60, and 90 min after treatment. Plasma and gastrocnemius muscles were collected for analyses. Treatments were designed to produce elevated blood glucose and insulin with basal levels of Leu (CHO); elevated Leu with basal levels of glucose and insulin (Leu); or a combined increase of glucose, insulin, and Leu (CHO + Leu). The CHO treatment stimulated PI 3-kinase activity and glucose uptake with no effect on the downstream translation initiation factor eIF4E. Leu alone stimulated the release of the translation initiation factor eIF4E from 4E-BP1 with no effects on PI 3-kinase activity or glucose uptake. The CHO + Leu treatment reduced the magnitude and duration of the PI 3-kinase response but maintained glucose uptake similar to the CHO treatment and eIF4E levels similar to the Leu treatment. These findings demonstrate that Leu reduces insulin-stimulated PI 3-kinase activity while increasing downstream translation initiation and with no effect on net glucose transport in skeletal muscle.  相似文献   

11.
It is now known that prenatal ethanol (EtOH) exposure is associated with impaired glucose tolerance and insulin resistance in rat offspring, but the underlying mechanism(s) is not known. To test the hypothesis that in vivo insulin signaling through phosphatidylinositol 3 (PI3)-kinase is reduced in skeletal muscle of adult rat offspring exposed to EtOH in utero, we gave insulin intravenously to these rats and probed steps in the PI3-kinase insulin signaling pathway. After insulin treatment, EtOH-exposed rats had decreased tyrosine phosphorylation of the insulin receptor beta-subunit and of insulin receptor substrate-1 (IRS-1), as well as reduced IRS-1-associated PI3-kinase in the gastrocnemius muscle compared with control rats. There was no significant difference in basal or insulin-stimulated Akt activity between EtOH-exposed rats and controls. Insulin-stimulated PKC isoform zeta phosphorylation and membrane association were reduced in EtOH-exposed rats compared with controls. Muscle insulin binding and peptide contents of insulin receptor, IRS-1, p85 subunit of PI3-kinase, Akt/PKB, and atypical PKC isoform zeta were not different between EtOH-exposed rats and controls. Thus insulin resistance in rat offspring exposed to EtOH in utero may be explained, at least in part, by impaired insulin signaling through the PI3-kinase pathway in skeletal muscle.  相似文献   

12.
Prolonged growth hormone (GH) excess is known to be associated with insulin resistance, but the underlying mechanisms remain unknown. The aim of this study was to assess the impact of GH on insulin-stimulated glucose metabolism and insulin signaling in human skeletal muscle. In a cross-over design, eight healthy male subjects (age 26.0 +/- 0.8 yr and body mass index 24.1 +/- 0.5 kg/m2) were infused for 360 min with either GH (Norditropin, 45 ng.kg(-1).min(-1)) or saline. During the final 180 min of the infusion, a hyperinsulinemic euglycemic clamp was performed (insulin infusion rate: 1.2 mU.kg(-1).min(-1)). Muscle biopsies from vastus lateralis were taken before GH/saline administration and after 60 min of hyperinsulinemia. GLUT4 content and insulin signaling, as assessed by insulin receptor substrate (IRS)-1-associated phosphatidylinositol 3-kinase and Akt activity were determined. GH levels increased to a mean (+/-SE) level of 20.0 +/- 2.3 vs. 0.5 +/- 0.2 microg/l after saline infusion (P < 0.01). During GH infusion, the glucose infusion rate during hyperinsulinemia was reduced by 38% (P < 0.01). In both conditions, free fatty acids were markedly suppressed during hyperinsulinemia. Despite skeletal muscle insulin resistance, insulin still induced a similar approximately 3-fold rise in IRS-1-associated PI 3-kinase activity (269 +/- 105 and 311 +/- 71% compared with baseline, GH vs. saline). GH infusion did not change Akt protein expression, and insulin caused an approximately 13-fold increase in Akt activity (1,309 +/- 327 and 1,287 +/- 173%) after both GH and saline infusion. No difference in total GLUT4 content was noted (114.7 +/- 7.4 and 107.6 +/- 16.7 arbitrary units, GH vs. saline, compared with baseline). In conclusion, insulin resistance in skeletal muscle induced by short-term GH administration is not associated with detectable changes in the upstream insulin-signaling cascade or reduction in total GLUT4. Yet unknown mechanisms in insulin signaling downstream of Akt may be responsible.  相似文献   

13.
We have examined the insulin-stimulated IRS-2 association with PI 3-kinase and the phosphorylation of AKT/PKB, which is functionally located downstream of the PI 3-kinase, in aged (obese) rats. The IRS-2 protein levels were similar in 2 and 20 month-old rats in both tissues, liver and muscle. There were reductions in insulin-induced IRS-2 tyrosine phosphorylation in liver and muscle, accompanied by a decrease in IRS-2/PI 3-kinase association and in AKT/PKB phosphorylation only in muscle tissue of aged rats. This regulation may be important in the altered glucose metabolism observed in aged (obese) rats.  相似文献   

14.
15.
To analyze the mechanism of action of the insulinomimetic agents H2O2, vanadate, and pervanadate (H2O2 and vanadate), CHO cells or CHO cells that overexpress wild-type or mutant insulin receptor and/or the insulin receptor substrate (IRS-1) were used. H2O2 or vanadate treatment alone had little or no effect on tyrosine phosphorylation of cellular proteins; however, pevanadate treatment dramatically enhanced tyrosine phosphorylation of a number of proteins including the insulin receptor and IRS-1. However, the insulin receptor and IRS-1 coimmunoprecipitate from insulin-treated but not from pervanadate-treated cells. Pervanadate-induced tyrosine phosphorylation of the insulin receptor led to an increase in insulin receptor tyrosine kinase activity toward IRS-1 in vivo and IRS-1 peptides in vitro equal to that induced by insulin treatment. Pervanadate-enhanced phosphorylation of IRS-1 led to a fifteenfold increase in IRS-1–associated phosphatidylinositol (Ptdlns) 3-kinase activity. However, insulin receptor–associated Ptdlns 3-kinase activity from pervanadate-treated cells was not detectable, while insulin receptor–associated Ptdlns 3-kinase activity from insulin-treated cells was 20% of the IRS-1-associated activity. Thus, pervanadate but not H2O2 or vanadate alone under these conditions mimics many of insulin actions, but pervanadate treatment does not induce insulin receptor/IRS-1 association.  相似文献   

16.
NYGGF4, an obesity-related gene, is proposed to be involved in the development of insulin resistance. Skeletal muscle is a primary target organ for insulin and NYGGF4 showed a relatively high expression level in skeletal muscle. Therefore, this study aimed to explore the effect of NYGGF4 on insulin sensitivity of skeletal muscle cells. RNA interference (RNAi) was adopted to silence NYGGF4 expression in mice C2C12 skeletal myocytes. A remarkably increased insulin-stimulated glucose uptake and GLUT4 translocation was observed in NYGGF4 silencing C2C12 cells. Importantly, the enhanced glucose uptake induced by NYGGF4 silencing could be abrogated by the PI3K inhibitor LY294002. In addition, the crucial molecules involved in PI3K insulin signaling pathway were detected by western blotting. The results showed that NYGGF4 knockdown dramatically activate the insulin-stimulated phosphorylation of IRS-1 and AKT. Taken together, these data demonstrate that NYGGF4 knockdown increases glucose transport in myocytes by activation of the IRS-1/PI3K/AKT insulin pathway.  相似文献   

17.
While the role of the class IA phosphoinositide 3-kinase (PI 3-kinase) in insulin signaling is well established, little is known about the role of the class II PI 3-kinases. We show that insulin stimulation of intact rat soleus and epitrochlearis muscles causes a 3- to 4-fold increase in the activity of the wortmannin-resistant alpha isoform of the class II PI 3-kinase (PI3K-C2alpha). This activation is rapid and parallels the insulin-induced activation of the class IA PI 3-kinase associated with IRS-1 in these muscles. However, while contraction activated p38 Map kinase, it did not stimulate the activity of the class II PI 3-kinase. Therefore, activation of class II PI 3-kinase is unlikely to provide a mechanism that explains the fact that exercise-induced activation of glucose uptake is not blocked by wortmannin. However, the results suggest that activation of class II PI 3-kinase is likely to play a role in insulin signaling pathways in skeletal muscle.  相似文献   

18.
Knowledge of the molecular mechanisms by which skeletal muscle hypertrophies in response to increased mechanical loading may lead to the discovery of novel treatment strategies for muscle wasting and frailty. To gain insight into potential early signaling mechanisms associated with skeletal muscle hypertrophy, the temporal pattern of mitogen-activated protein kinase (MAPK) phosphorylation and phosphatidylinositol 3-kinase (PI3-kinase) activity during the first 24 h of muscle overload was determined in the rat slow-twitch soleus and fast-twitch plantaris muscles after ablation of the gastrocnemius muscle. p38alpha MAPK phosphorylation was elevated for the entire 24-h overload period in both muscles. In contrast, Erk 2 and p54 JNK phosphorylation were transiently increased by overload, returning to the levels of sham-operated controls by 24 h. PI3-kinase activity was increased by muscle overload only at 12 h of overload and only in the plantaris muscle. In summary, sustained elevation of p38alpha MAPK phosphorylation occurred early in response to muscle overload, identifying this pathway as a potential candidate for mediating early hypertrophic signals in response to skeletal muscle overload.  相似文献   

19.
Endurance exercise training promotes important metabolic adaptations, and the adipose tissue is particularly affected. The aim of this study was to investigate how endurance exercise training modulates some aspects of insulin action in isolated adipocytes and in intact adipose tissue. Male Wistar rats were submitted to daily treadmill running (1 h/day) for 7 wk. Sedentary age-matched rats were used as controls. Final body weight, body weight gain, and epididymal fat pad weight did not show any statistical differences between groups. Adipocytes from trained rats were smaller than those from sedentary rats (205 +/- 16.8 vs. 286 +/- 26.4 pl; P < 0.05). Trained rats showed decreased plasma glucose (4.9 +/- 0.13 vs. 5.3 +/- 0.07 mM; P < 0.05) and insulin levels (0.24 +/- 0.012 vs. 0.41 +/- 0.049 mM; P < 0.05) and increased insulin-stimulated glucose uptake (23.1 +/- 3.1 vs. 12.1 +/- 2.9 pmol/cm(2); P < 0.05) compared with sedentary rats. The number of insulin receptors and the insulin-induced tyrosine phosphorylation of insulin receptor-beta subunit did not change between groups. Insulin-induced tyrosine phosphorylation insulin receptor substrates (IRS)-1 and -2 increased significantly (1.57- and 2.38-fold, respectively) in trained rats. Insulin-induced IRS-1/phosphatidylinositol 3 (PI3)-kinase (but not IRS-2/PI3-kinase) association and serine Akt phosphorylation also increased (2.06- and 3.15-fold, respectively) after training. The protein content of insulin receptor-beta subunit, IRS-1 and -2, did not differ between groups. Taken together, these data support the hypothesis that the increased adipocyte responsiveness to insulin observed after endurance exercise training is modulated by IRS/PI3-kinase/Akt pathway.  相似文献   

20.
Combining endurance and strength training (concurrent training) may change the adaptation compared with single mode training. However, the site of interaction and the mechanisms are unclear. We have investigated the hypothesis that molecular signaling of mitochondrial biogenesis after endurance exercise is impaired by resistance exercise. Ten healthy subjects performed either only endurance exercise (E; 1-h cycling at ~65% of maximal oxygen uptake), or endurance exercise followed by resistance exercise (ER; 1-h cycling + 6 sets of leg press at 70-80% of 1 repetition maximum) in a randomized cross-over design. Muscle biopsies were obtained before and after exercise (1 and 3 h postcycling). The mRNA of genes related to mitochondrial biogenesis [(peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1)α, PGC-1-related coactivator (PRC)] related coactivator) and substrate regulation (pyruvate dehydrogenase kinase-4) increased after both E and ER, but the mRNA levels were about twofold higher after ER (P < 0.01). Phosphorylation of proteins involved in the signaling cascade of protein synthesis [mammalian target of rapamycin (mTOR), ribosomal S6 kinase 1, and eukaryotic elongation factor 2] was altered after ER but not after E. Moreover, ER induced a larger increase in mRNA of genes associated with positive mTOR signaling (cMyc and Rheb). Phosphorylation of AMP-activated protein kinase, acetyl-CoA carboxylase, and Akt increased similarly at 1 h postcycling (P < 0.01) after both types of exercise. Contrary to our hypothesis, the results demonstrate that ER, performed after E, amplifies the adaptive signaling response of mitochondrial biogenesis compared with single-mode endurance exercise. The mechanism may relate to a cross talk between signaling pathways mediated by mTOR. The results suggest that concurrent training may be beneficial for the adaptation of muscle oxidative capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号