首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bipolar assembly of caveolae in retinal pigment epithelium   总被引:1,自引:0,他引:1  
Caveolae and their associated structural proteins, the caveolins, are specialized plasmalemmal microdomains involved in endocytosis and compartmentalization of cell signaling. We examined the expression and distribution of caveolae and caveolins in retinal pigment epithelium (RPE), which plays key roles in retinal support, visual cycle, and acts as the main barrier between blood and retina. Electron microscopic observation of rat RPE, in situ primary cultures of rat and human RPE and a rat RPE cell line (RPE-J) demonstrated in all cases the presence of caveolae in both apical and basolateral domains of the plasma membrane. Caveolae were rare in RPE in situ but were frequent in primary RPE cultures and in RPE-J cells, which correlated with increased levels in the expression of caveolin-1 and -2. The bipolar distribution of caveolae in RPE is striking, as all other epithelial cells examined to date (liver, kidney, thyroid, and intestinal) assemble caveolae only at the basolateral side. This might be related to the nonpolar distribution of both caveolin-1 and 2 in RPE because caveolin-2 is basolateral and caveolin-1 nonpolar in other epithelial cells. The bipolar localization of plasmalemmal caveolae in RPE cells may reflect specialized roles in signaling and trafficking important for visual function. caveolin; raft microdomains; membrane traffic; normal rat kidney  相似文献   

2.
The differential polarized distribution of the reduced- folate transporter (RFT-1) and folate receptor alpha (FRalpha), the two proteins involved in the transport of folate, has been characterized in normal mouse retinal pigment epithelium (RPE) and in cultured human RPE cells. RPE cells mediate the vectorial transfer of nutrients from choroidal blood to neural retina. Whereas FRalpha is known to be present in many cell types of the neural retina, in situ hybridization analysis in the present study demonstrated that RFT-1 is present only in RPE. Laser-scanning confocal microscopy using antibodies specific for RFT-1 demonstrated an apical distribution of this protein in cultured human and intact mouse RPE, which contrasts with the basolateral distribution of FRalpha in these cells. The expression of RFT-1 in the RPE cell apical membrane was confirmed by functional studies with purified apical membrane vesicles from bovine RPE. These studies, done with N(5)-methyltetrahydrofolate (the predominant folate derivative in blood) and folate as substrates, have shown that RFT-1 functions in a Na(+)- and C1(-)-independent manner. The transporter is specific for folate and its analogs. A transmembrane H(+) gradient influences the transport function of this protein markedly; the transport mechanism is likely to be either folate/H(+) co-transport or folate/OH(-) exchange. Based on the differential polarization of FRalpha and RFT-1 in RPE, we suggest that these two proteins work in a concerted manner to bring about the vectorial transfer of folate across the RPE cell layer from the choroidal blood to the neural retina. This constitutes the first report of the differential polarization of the two folate transport proteins in any polarized epithelium.  相似文献   

3.
Taurine is found at millimolar concentration in the retina and retinal pigment epithelium. High concentrations of taurine are essential for maintenance of retinal function. Taurine uptake by retina and retinal pigment epithelium was significantly enhanced by physiological concentrations of insulin as well as by high glucose concentrations. The results indicate that both, glucose and insulin enhanced taurine uptake occur through an increase in transport capacity which offset an additional, small decrease in affinity of the taurine carrier. Similar results were observed in retina and retinal pigment epithelium from streptozotocin-induced diabetic rats, suggesting that glucose and insulin regulate the taurine carrier through the same mechanism.  相似文献   

4.
Oxidative stress is an important causative factor in the pathogenesis of diabetic retinopathy. Therefore, it becomes important to understand the mechanisms that help maintain appropriate levels of a small molecule antioxidant such as ascorbate in the retina. The outer blood-barrier which results from the tight junctions between the retinal pigment epithelial cells (RPE) restricts the flow of nutrients reaching the retina. In this study, we characterized the transport properties of carboxyl-(14)C ascorbate (AA) in normal rat retina and RPE, and compared them with those in streptozotocin-diabetic rats. Retina and RPE accumulated AA by a temperature-sensitive and energy-dependent kinetic mechanism with an apparent K(M) of 380 and 420 microM, respectively. Accumulation of AA was significantly reduced in a sodium-free medium. Although high glucose concentrations reduced AA uptake by 40%, this was not affected by cytochalasin B. The RPE and retina of diabetic rats presented lower levels of AA accumulation. These findings suggest the presence of the specific vitamin C transporter SVCT in retina and RPE, which may be involved in the manifestation of diabetic retinopathy.  相似文献   

5.
During embryogenesis, the cells of the eye primordium are initially capable of giving rise to either neural retina or pigmented epithelium (PE), but become restricted to one of these potential cell fates. However, following surgical removal of the retina in embryonic chicks and larval amphibians, new neural retina is generated by the transdifferentiation, or phenotypic switching, of PE cells into neuronal progenitors. A recent study has shown that basic fibroblast growth factor (bFGF) stimulates this process in chicks in vivo. To characterize further the mechanisms by which this factor regulates the phenotype of retinal tissues, we added bFGF to enzymatically dissociated chick embryo PE. We found that bFGF stimulated proliferation and caused several morphological changes in the PE, including the loss of pigmentation; however, no transdifferentiation to neuronal phenotypes was observed. By contrast, when small sheets of PE were cultured as aggregates on a shaker device, preventing flattening and spreading on the substratum, we found that a large number of retinal progenitor cells were generated from the PE treated with bFGF. These results indicate that bFGF promotes retinal regeneration in vitro, as well as in ovo, and suggest that the ability of chick PE to undergo transdifferentiation to neuronal progenitors appears to be dependent on the physical configuration of the cells.  相似文献   

6.
7.
Chick embryonic neural retina (NR) dedifferentiates in culture and can transdifferentiate spontaneously into retinal pigment epithelium (RPE). Both, primary RPE and transdifferentiated RPE (RPEt), are characterized by pigmentation, expression of RPE-specific protein, eRPEAG and lack of expression of the neural cell adhesion molecule, NCAM. In contrast, NR cells are unpigmented and express NCAM but not eRPE(AG). Functionally, both primary RPE and the RPEt cells display a pH(i) response to bFGF, which is different from that of the NR. We used these characteristics to distinguish cell types in primary cultures of chick NR and follow the changes in phenotype that occur during transdifferentiation. We show that the RPEt forms as small "islands" in the packed regions of the primary, "mother" NR cell sheets, in a stochastic process. Because of a small number of cells involved in the initiation of the transdifferentiation we refer to it as a "leader effect" to contrast it with the "community effect" which requires many competent cells to be present in a group to be able to respond to an inductive signal. The RPEt then expands centrifugally and underneath the surrounding NR sheet. To determine if the RPEt maintains its identity in isolation while displaying the RPE-typical phenotypic plasticity, we explanted the islands of RPEt and treated half of them with bFGF. The untreated RPEt maintained its closely packed, polygonal pigmented phenotype but the bFGF-treated RPEt transdifferentiated into a non-pigmented, NR-like phenotype, indicating that RPEt encompasses the full differentiation repertoire of native RPE.  相似文献   

8.
9.
Vitronectin (Vn), a multifunctional plasma protein synthesized primarily in the liver, is often present as a component of the extracellular plaques and deposits that accompany various age-related human diseases. Recently, we reported that Vn is also a prominent molecular constituent of drusen, the extracellular deposits associated with age-related macular degeneration (AMD) (1). The cellular source(s) of the Vn in drusen, as well as in these other plaques and deposits, remains uncertain. In this study, we used real-time quantitative RT-PCR to measure the relative levels of Vn mRNA in the cells and tissues that lie in close proximity to drusen. The results confirm that the human liver is an abundant source of Vn mRNA. Levels of Vn mRNA in kidney, lung, and fetal or adult brain are <3% of those in liver. Remarkably, mean Vn mRNA levels in the neural retina significantly exceed those in brain and represent close to 40% of the Vn mRNA value measured in human liver. Substantial levels of Vn mRNA are also present in the adjacent retinal pigment epithelium (RPE). These results identify the neural retina, for the first time, as an abundant source of Vn mRNA. They also suggest that both the neural retina and RPE are potent biosynthetic sources of Vn in humans, and potentially significant local contributors to the Vn that accumulates in drusen.  相似文献   

10.
It has been long speculated that specific signals are transmitted from photoreceptors to the retinal pigment epithelium (RPE). However, such signals have not been identified. In this study, we examined the retinal expression and localization of acetylcholine-related molecules as putative candidates for these signals. Previous reports revealed that α7 nicotinic acetylcholine receptors (nAChRs) are present in the microvilli of RPE cells that envelope the tips of photoreceptor outer segments (OS). Secreted mammalian leukocyte antigen 6/urokinase-type plasminogen activator receptor-related protein-1 (SLURP-1) is a positive allosteric modulator of the α7 nAChR. Therefore, we first focused on the expression of SLURP-1. SLURP-1 mRNA was expressed in the outer nuclear layer, which is comprised of photoreceptor cell bodies. SLURP-1 immunoreactivity co-localized with rhodopsin and S-opsin in photoreceptor OS, while choline acetyltransferase (ChAT) and high affinity choline transporter (CHT-1) were also expressed in photoreceptor OS. Immunoelectron microscopy identified that the majority of SLURP-1 was localized to the plasma membranes of photoreceptor OS. These results provide evidence that SLURP-1 is synthesized in photoreceptor cell bodies and transported to photoreceptor OS, where SLURP-1 may also be secreted. Our findings suggest that photoreceptor OS communicate via neurotransmitters such as ACh and SLURP-1, while RPE cells might receive these signals through α7 nAChRs in their microvilli.  相似文献   

11.
12.
Retinal pigment epithelial cells (RPE) constitute a simple layer of cuboidal cells that are strategically situated behind the photoreceptor (PR) cells. The inconspicuousness of this monolayer contrasts sharply with its importance [1]. The relationship between the RPE and PR cells is crucial to sight; this is evident from basic and clinical studies demonstrating that primary dysfunctioning of the RPE can result in visual cell death and blindness. RPE cells carry out many functions including the conversion and storage of retinoid, the phagocytosis of shed PR outer segment membrane, the absorption of scattered light, ion and fluid transport and RPE-PR apposition. The magnitude of the demands imposed on this single layer of cells in order to execute these tasks, will become apparent to the reader of this review as will the number of clinical disorders that take origin from these cells.  相似文献   

13.
14.
In bovine retinal pigment epithelium membranes we have found three hydrolases which were active against trans-retinyl palmitate. This was possible by assaying different subcellular fractions as a function of pH in the range 3-9. Detection of these activities has been favored by the use in the enzyme assay of Triton X-100, which has an activating effect up to a concentration of 0.03% at a detergent-protein ratio of about 1.5-3.0. Apparent kinetic parameters for the retinyl ester hydrolases have been determined after a study of the optimization of assay conditions. Vmax values for hydrolases acting at pH 4.5, 6.0, and 7.0 were, respectively, 156, 55, and 70 nmol/h/mg. To identify the subcellular site for these hydrolytic activities, assays of marker enzymes from various organelles in each subcellular preparation were carried out, demonstrating the lysosomal origin of the pH 4.5 retinyl ester hydrolase and the microsomal origin of the pH 6.0 retinyl ester hydrolase and suggesting that the pH 7.0 retinyl ester hydrolase originates from the Golgi complex.  相似文献   

15.
J I Perlman  J Piltz  G Korte  C Tsai 《Acta anatomica》1989,135(4):354-360
Endocytosis in the retinal pigment epithelium (RPE) of rats was studied using horseradish peroxidase, microperoxidase and ferritin tracers. Tracer uptake was mediated by coated pits and coated vesicles. Coated pits formed at two discrete regions at the RPE plasma membrane: that portion of basal membrane directly opposing Bruch's membrane, and at the bases of the apical lamellae and villi. Two populations of coated vesicles were identified and distinguished by size, location and function. Large coated vesicles (91.8 +/- 14.7 nm in diameter) were located near the cell surface and incorporated tracer. Small coated vesicles (64.5 +/- 15.7 nm diameter) located more deeply within the cell were not tracer-labeled, and were often fused with the endoplasmic reticulum or the Golgi apparatus. Observations of the endocytic pathway in rat RPE cells are presented. Tracer was also found in organelles of the lysosomal system, e.g. the multivesicular body, but was not identified in the smooth endoplasmic reticulum or Golgi apparatus.  相似文献   

16.
S S Tate  M W Dunn  A Meister 《Life sciences》1976,18(10):1145-1148
The activities of γ-glutamyl transpeptidase and other enzymes of the γ-glutamyl cycle, a series of reactions that catalyzes the synthesis and utilization of glutathione, were studied in the rabbit retina. Histochemical studies demonstrated that γ-glutamyl transpeptidase is localized in the visual receptor cells and the retinal pigment epithelium. Rat and mouse retinas revealed similar localizations of transpeptidase. These findings are in accord with the view that γ-glutamyl transpeptidase is involved in the transport of amino acids between the retinal pigment epithelium and the avascular visual receptor cells.  相似文献   

17.
Peroxidase activity, assayed with 2 mM-H2O2 and suitable hydrogen donors (either p-phenyl-enediamine or diaminobenzidine), was demonstrated in homogenates of neural retina and pigment epithelium of both the dog and the cow. The enzyme is particle-associated in the native state, but is readily extractable by brief sonication or freeze-thawing. At optimum pH, which is between 4.0 and 4.5 for both sources, the specific activity is up to 40 times greater in pigment epithelial cells than in neural retina. Some catalase activity was detected in extracts from both bovine and canine neural retina, but catalase was essentially absent in pigment epithelium. Fractionation of bovine pigment epithelial cells showed that peroxidase activity is associated mainly with heavy organelles sedimenting at low centrifugal forces. Melanosomes, nuclei, melanolysosomes and plasma membranes were the principal organelles identified in these low speed sediments. It was not possible to separate them either by differential centrifugation or on discontinuous sucrose gradients. However, melanosomes were excluded as the only source of peroxidase activity by isolating separately the melanotic and amelanotic cell populations; equal peroxidase was found in both cell types. Since nuclei are not a likely source of this enzyme, it is suggested that most of the peroxidase activity in bovine pigment epithelial cells is localized in either the melanolysosomes, plasma membranes, or both.  相似文献   

18.
The retinal pigment epithelium (RPE) is unique among epithelia in that its apical surface does not face a lumen, but, instead, is specialized for interaction with the neural retina. The molecules involved in the interaction of the RPE with the neural retina are not known. We show here that the neural cell adhesion molecule (N-CAM) is found both on the apical surface of RPE in situ and on the outer segments of photoreceptors, fulfilling an important requisite for an adhesion role between both structures. Strikingly, culture of RPE results in rapid redistribution of N-CAM to the basolateral surface. This is not due to an isoform shift, since the N-CAM expressed by cultured cells (140 kD) is the same as that expressed by RPE in vivo. Rather, the reversed polarity of N-CAM appears to result from the disruption of the contact between the RPE and the photoreceptors of the neural retina. We suggest that N-CAM in RPE and photoreceptors participate in these interactions.  相似文献   

19.
Light toxicity is suspected to enhance certain retinal degenerative processes such as age-related macular degeneration. Death of photoreceptors can be induced by their exposure to the visible light, and although cellular processes within photoreceptors have been characterized extensively, the role of the retinal pigment epithelium (RPE) in this model is less well understood. We demonstrate that exposition to intense light causes the immediate breakdown of the outer blood–retinal barrier (BRB). In a molecular level, we observed the slackening of adherens junctions tying up the RPE and massive leakage of albumin into the neural retina. Retinal pigment epithelial cells normally secrete vascular endothelial growth factor (VEGF) at their basolateral side; light damage in contrast leads to VEGF increase on the apical side – that is, in the neuroretina. Blocking VEGF, by means of lentiviral gene transfer to express an anti-VEGF antibody in RPE cells, inhibits outer BRB breakdown and retinal degeneration, as illustrated by functional, behavioral and morphometric analysis. Our data show that exposure to high levels of visible light induces hyperpermeability of the RPE, likely involving VEGF signaling. The resulting retinal edema contributes to irreversible damage to photoreceptors. These data suggest that anti-VEGF compounds are of therapeutic interest when the outer BRB is altered by retinal stresses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号