首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
2.
3.
Vaccinia virus has evolved multiple mechanisms to counteract the interferon-induced antiviral host cell response. Recently, two vaccinia virus gene products were shown to interfere with the activity of the double-stranded RNA-dependent protein kinase (PKR): the K3L gene product and the E3L gene product. We have evaluated the efficiency by which these gene products inhibit PKR and whether they act in a synergistic manner. The effects of the two vaccinia virus gene products were compared in an in vivo system in which translation of a reporter gene (dihydrofolate reductase or eukaryotic translation initiation factor 2 alpha [eIF-2 alpha]) was inhibited because of the localized activation of PKR. In this system, the E3L gene product, and to a lesser extent the K3L gene product, potentiated translation of the reporter gene and inhibited eIF-2 alpha phosphorylation. Analysis in vitro demonstrated that the E3L gene product inhibited PKR approximately 50- to 100-fold more efficiently than the K3L gene product. However, further studies demonstrated that the mechanism of action of these two inhibitors was different. Whereas the E3L inhibitor interfered with the binding of the kinase to double-stranded RNA, the K3L inhibitor did not. We propose that the K3L inhibitor acts through its homology to eIF-2 alpha to interfere with the interaction of eIF-2 alpha with PKR. The two inhibitors did not display a synergistic effect on translation or eIF-2 alpha phosphorylation. In addition, neither K3L nor E3L expression detectably altered cellular protein synthesis.  相似文献   

4.
Animal viruses have co-evolved with their hosts for millions of years. During this time, the viruses have developed intricate mechanisms to utilize efficiently their host's metabolic pathways, especially those involving macromolecular synthesis, for virus propagation. In particular, many different viruses modulate and usurp their host's translational machinery for use in the synthesis of their own proteins. However, the infected hosts have developed or adapted cellular mechanisms to interdict virus infection. One of these mechanisms is the interferon response, which entails in part a translational regulatory activity that inhibits virus growth. Viruses, in turn, have devised strategies that act as countermeasures to some aspects of the interferon response. These complex virus-host interactions occur at the level of initiation of translation. Two initiation factors, eIF-2 and eIF-4F, play a significant role in a number of virus-host interactions. The recent advances in our understanding of the mode of action of these translation initiation factors have facilitated research on virus-cell interactions at the level of translation. This review is not intended to summarize the general knowledge in this field, but rather to limit the analysis to several examples of virus-host interactions and to speculate on the interplay between the molecular mechanisms involved in these phenomena.  相似文献   

5.
6.
Overview: phosphorylation and translation control   总被引:3,自引:0,他引:3  
J W Hershey 《Enzyme》1990,44(1-4):17-27
Protein synthesis is controlled by the phosphorylation of proteins comprising the translational apparatus. At least 12 initiation factor polypeptides, 3 elongation factors and a ribosomal protein are implicated. Stimulation of translation correlates with enhanced phosphorylation of eIF-4F, eIF-4B, eIF-2B, eIF-3 and ribosomal protein S6, whereas inhibition correlates with phosphorylation of eEF-2 and the alpha-subunit of eIF-2. Strong evidence for regulatory roles exists for eIF-2, eIF-4F and eEF-2, whereas changes in other factor activities due to phosphorylation remain to be demonstrated. Regulation of the specific activity of the translational apparatus by phosphorylation appears to be a general mechanism for the control of rates of global protein synthesis, and may also play a role in modulating the translation of specific mRNAs.  相似文献   

7.
We investigated the possible translational role which elevated concentrations of highly purified Semliki Forest virus (SFV) capsid (C)-protein molecules may play in a cell-free translation system. Here we decomonstrate that in the absence of double-stranded RNA high concentrations of C protein triggered the phosphorylation of the interferon-induced, double-stranded RNA-activated protein kinase, PKR. Activated PKR in turn phosphorylated its natural substrate, the subunit of eukaryotic initiation factor 2 (eIF-2), thereby inhibiting initiation of host cell translation. These findings were further strengthened by experiments showing that during natural infection with SFV the maximum phosphorylation of PKR coincided with the maximum synthesis of C protein 4–9 hours post infection. Thus, our results demonstrate that high concentrations of C-protein molecules may act in a hitherto novel mechanism on PKR to inhibit host cell protein synthesis during viral infection.  相似文献   

8.
9.
Phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2 alpha) impairs translation initiation by inhibiting the guanine nucleotide exchange factor for eIF-2, known as eIF-2B. In Saccharomyces cerevisiae, phosphorylation of eIF-2 alpha by the protein kinase GCN2 specifically stimulates translation of GCN4 mRNA in addition to reducing general protein synthesis. We isolated mutations in several unlinked genes that suppress the growth-inhibitory effect of eIF-2 alpha phosphorylation catalyzed by mutationally activated forms of GCN2. These suppressor mutations, affecting eIF-2 alpha and the essential subunits of eIF-2B encoded by GCD7 and GCD2, do not reduce the level of eIF-2 alpha phosphorylation in cells expressing the activated GCN2c kinase. Four GCD7 suppressors were shown to reduce the derepression of GCN4 translation in cells containing wild-type GCN2 under starvation conditions or in GCN2c strains. A fifth GCD7 allele, constructed in vitro by combining two of the GCD7 suppressors mutations, completely impaired the derepression of GCN4 translation, a phenotype characteristic of deletions in GCN1, GCN2, or GCN3. This double GCD7 mutation also completely suppressed the lethal effect of expressing the mammalian eIF-2 alpha kinase dsRNA-PK in yeast cells, showing that the translational machinery had been rendered completely insensitive to phosphorylated eIF-2. None of the GCD7 mutations had any detrimental effect on cell growth under nonstarvation conditions, suggesting that recycling of eIF-2 occurs efficiently in the suppressor strains. We propose that GCD7 and GCD2 play important roles in the regulatory interaction between eIF-2 and eIF-2B and that the suppressor mutations we isolated in these genes decrease the susceptibility of eIF-2B to the inhibitory effects of phosphorylated eIF-2 without impairing the essential catalytic function of eIF-2B in translation initiation.  相似文献   

10.
11.
12.
The mechanism by which internal ribosomal binding on the picornaviral RNA takes place is still not known. An important role has been suggested for eukaryotic initiation factors eIF-4A, eIF-4B, as well as for some not yet defined trans-acting factors like p52 for poliovirus and p58 for encephalomyocarditis virus (EMCV). In this paper we describe the competition between the 5' untranslated region (UTR) of EMCV and globin mRNA for the translational apparatus in rabbit reticulocyte lysates and show that the factor that is competed for is eIF-2/2B. The EMC 5' UTR is a very strong inhibitor of globin synthesis in the rabbit reticulocyte lysate because of a 30-fold higher eIF-2/2B binding capacity. Mutations 100 to 140 nucleotides upstream of the initiation codon led to a decreased efficiency to initiate translation and to a decreased ability to inhibit globin mRNA translation. The results suggest an important role for eIF-2/2B binding in EMC RNA translation and therefore in internal initiation.  相似文献   

13.
《Seminars in Virology》1993,4(4):201-207
Regulation of gene expression frequently involves translational controls that operate at the level of the initiation phase. Initiation of protein synthesis in eukaryotes is promoted by greater than 10 initiation factors. Important among these are initiation factors eIF-2 and eIF-2B, which stimulate methionyl-tRNA binding to 40S ribosomal subunits, and eIF-4A, eIF-4B and eIF-4F, which stimulate mRNA binding. Many of the initiation factors are phosphorylated in vivo, and phosphorylation has been shown to regulate rates of global protein synthesis. Phosphorylation of eIF-2 on its α-subunit results in repression of translation by interfering with the recycling of the factor. Phosphorylation of eIF-4F on its α- and γ-subunits activates this limiting initiation factor and stimulates protein synthesis. Other initiation factor activities may also be regulated by phosphorylation, but these have not yet been characterized in detail. Regulating the translational activity of the cell by phosphorylation appears to be important in virus-infected cells and in the control of cell proliferation.  相似文献   

14.
Infection of mouse L cells by vesicular stomatitis virus results in the inhibition of cellular protein synthesis. Lysates prepared from these infected cells are impaired in their ability to translate endogenous or exogenous cellular and viral mRNAs. The ability of initiation factors from rabbit reticulocytes to stimulate protein synthesis in these lysates was examined. Preparations of eukaryotic initiation factor 2 (eIF-2) and the guanine nucleotide exchange factor (GEF) stimulated protein synthesis strongly in L cell lysates from infected cells but only slightly in lysates from mock-infected cells. Maximal stimulation was obtained when a fraction containing eukaryotic initiation factors 4B (eIF-4B) and 4F (eIF-4F) was also present. In lysates from infected cells, these initiation factors increased endogenous cellular mRNA translation on the average 2-fold. In contrast, endogenous viral mRNA translation was increased to a much greater extent: the M protein was stimulated 8-fold, NS 5-fold, N 2.5-fold, and G 12-fold. When fractions containing eIF-4B, eIF-4F, or eIF-4A were added to these lysates in the presence of eIF-2, all three stimulated translation. Fractions containing rabbit reticulocyte initiation factors eIF-3 and eIF-6 had no effect on translation in either lysate. The results suggest that lysates from infected L cells are defective in the catalytic utilization of eIF-2 and deficient in mRNA binding protein activity.  相似文献   

15.
16.
Interferon resistance of vaccinia virus is mediated by specific inhibition of phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2 alpha) by the double-stranded-RNA-activated (DAI) protein kinase. Vaccinia virus encodes a homolog of eIF-2 alpha, K3L, the deletion of which renders the virus sensitive to interferon treatment. We have studied the mechanism by which this protein product elicits interferon resistance in a transient DNA transfection system designed to evaluate regulators of eIF-2 alpha phosphorylation. In this system, translation of a reporter gene mRNA is inefficient because of eIF-2 phosphorylation mediated by the DAI protein kinase. Cotransfection of the K3L gene enhances translation of the reporter mRNA in this system. The K3L protein inhibits eIF-2 alpha phosphorylation and DAI kinase activation, apparently without being phosphorylated itself. Inhibition of protein synthesis, elicited by expression of a mutant Ser-51----Asp eIF-2 alpha designed to mimic a phosphorylated serine, is not relieved by the presence of K3L, suggesting that K3L cannot bypass a block imposed by eIF-2 alpha phosphorylation. The results suggest that K3L acts as a decoy of eIF-2 alpha to inhibit DAI kinase autophosphorylation and activation. Another vaccinia virus gene product, K1L, which is required for growth of vaccinia virus on human cells, does not enhance translation in this assay.  相似文献   

17.
I Edery  R Petryshyn  N Sonenberg 《Cell》1989,56(2):303-312
All mRNAs of human immunodeficiency virus 1 (HIV-1) contain in their 5' untranslated region a sequence termed TAR that responds to trans-activation by the tat (trans-activating) protein. This RNA sequence assumes a stable secondary structure, and its cap structure is relatively inaccessible. Here we report that these structural properties of the TAR sequence underlie the ability of TAR to inhibit in trans the translation of other mRNAs. This mechanism of translation inhibition involves the activation of the double-stranded RNA-dependent kinase (dsl), which in turn phosphorylates the protein synthesis initiation factor 2 (eIF-2). Mutations in the TAR region that diminish the stability of the secondary structure cause a significant reduction in the trans-inhibition. A similar reduction in the dsl activation occurs when TAR is placed further downstream of the cap structure. This is a clear demonstration of a specific naturally occurring mRNA sequence that can activate dsl. We suggest a novel translational regulatory mechanism that interdigitates the activities of eIF-2 and eIF-4F.  相似文献   

18.
Extracts from poliovirus-infected HeLa cells are unable to translate vesicular stomatitis virus or cellular mRNAs in vitro, probably reflecting the poliovirus-induced inhibition of host cell protein synthesis which occurs in vivo. Crude initiation factors from uninfected HeLa cells are able to restore translation of vesicular stomatitis virus mRNA in infected cell lysates. This restoring activity separates into the 0 to 40% ammonium sulfate fractional precipitate of ribosomal salt wash. Restoring activity is completely lacking in the analogous fractions prepared from poliovirus-infected cells. The 0 to 40% ammonium sulfate precipitates from both uninfected and infected cells contain eucaryotic initiation factor 3 (eIF-3), eIf-4B, and the cap-binding protein (CBP), which is detected by means of a cross-linking assay, as well as other proteins. The association of eIF-3 and cap binding protein was examined. The 0 to 40% ammonium sulfate precipitate of ribosomal salt wash from uninfected and infected cells was sedimented in sucrose gradients. Each fraction was examined for the presence of eIF-3 antigens by an antibody blot technique and for the presence of the CBP by cross-linking to cap-labeled mRNAs. From uninfected cells, a major proportion of the CBP cosedimented with eIF-3; however, none of the CBP from infected cells sedimented with eIF-3. The results suggest that the association of the CBP with eIF-3 into a functional complex may have been disrupted during the course of poliovirus infection.  相似文献   

19.
A Haghighat  S Mader  A Pause    N Sonenberg 《The EMBO journal》1995,14(22):5701-5709
An important aspect of the regulation of gene expression is the modulation of translation rates in response to growth factors, hormones and mitogens. Most of this control is at the level of translation initiation. Recent studies have implicated the MAP kinase pathway in the regulation of translation by insulin and growth factors. MAP kinase phosphorylates a repressor of translation initiation [4E-binding protein (BP) 1] that binds to the mRNA 5' cap binding protein eukaryotic initiation factor (eIF)-4E and inhibits cap-dependent translation. Phosphorylation of the repressor decreases its affinity for eIF-4E, and thus relieves translational inhibition. eIF-4E forms a complex with two other polypeptides, eIF-4A and p220, that promote 40S ribosome binding to mRNA. Here, we have studied the mechanism by which 4E-BP1 inhibits translation. We show that 4E-BP1 inhibits 48S pre-initiation complex formation. Furthermore, we demonstrate that 4E-BP1 competes with p220 for binding to eIF-4E. Mutants of 4E-BP1 that are deficient in their binding to eIF-4E do not inhibit the interaction between p220 and eIF-4E, and do not repress translation. Thus, translational control by growth factors, insulin and mitogens is affected by changes in the relative affinities of 4E-BP1 and p220 for eIF-4E.  相似文献   

20.
The stimulation of translation in starfish oocytes by the maturation hormone, 1-methyladenine (1-MA), requires the activation or mobilization of both initiation factors and mRNAs [Xu and Hille, Cell Regul. 1:1057, 1990]. We identify here the translational initiation complex, eIF-4F, and the guanine nucleotide exchange factor for eIF-2, eIF-2B, as the rate controlling components of protein synthesis in immature oocytes of the starfish, Pisaster orchraceus. Increased phosphorylation of eIF-4E, the cap binding subunit of the eIF-4F complex, is coincident with the initial increase in translational activity during maturation of these oocytes. Significantly, protein kinase C activity increased during oocyte maturation in parallel with the increase in eIF-4E phosphorylation and protein synthesis. An increase in the activities of cdc2 kinase and mitogen-activated myelin basic protein kinase (MBP kinase) similarly coincide with the increase in eIF-4E phosphorylation. However, neither cdc2 kinase nor MBP kinase phosphorylates eIF-4E in vitro. Casein kinase II activity does not change during oocyte maturation, and therefore, cannot be responsible for the activation of translation. Treatment of oocytes with phorbol 12-myristate 13-acetate, an activator of protein kinase C, for 30 min prior to the addition of 1-MA resulted in the inhibition of 1-MA-induced phosphorylation of eIF-4E, translational activation, and germinal vesicle breakdown. Therefore, protein kinase C may phosphorylate eIF-4E, after very early events of maturation. Another possibility is that eIF-4E is phosphorylated by an unknown kinase that is activated by the cascade of reactions stimulated by 1-MA. In conclusion, our results suggest a role for the phosphorylation of eIF-4E in the activation of translation during maturation, similar to translational regulation during the stimulation of growth in mammalian cells. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号