首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is evidence to suggest that several different groups of drugs including the so-called coronary vasodilators, benzodiazepines, and calcium channel inhibitors may owe their vasoactivity, in part, to the potentiation of the vasorelaxant effects of endogenous adenosine. To measure the affinity of some of these agents for the membrane-located nucleoside transport system, competition binding assays have been performed using the high-affinity radioligand [3H]nitrobenzylthioinosine (NBMPR). Experiments were performed on human erythrocytes and cardiac membranes from guinea pigs and rats. Recognized nucleoside transport inhibitors had high affinity (less than 50 nM) for NBMPR recognition sites associated with the nucleoside transporter complex in human erythrocytes, whereas calcium channel inhibitors and benzodiazepines had predominantly low affinity (greater than 1 microM). Although some recognized transport inhibitors, such as dipyridamole, show marked differences in affinity for NBMPR sites in guinea pig and rat tissues, benzodiazepines and calcium channel blockers displayed no such species selectivity and had low affinity (greater than 1 microM) for NBMPR sites in both guinea pig and rat cardiac membranes. Consequently, it is unlikely that agents such as benzodiazepines and calcium channel inhibitors cause significant inhibition of adenosine transport, and hence potentiate adenosine actions, at the concentrations required to induce effects through occupation of their respective, specific high-affinity sites.  相似文献   

2.
The binding of [3H]nitrobenzylthioinosine (NBMPR) to specific membrane sites in guinea pig brain was rapid, reversible, and saturable, and was dependent upon protein concentration, pH, and temperature. Mass law analysis of the binding data for cortical membranes indicated that NBMPR bound with high affinity to a single class of sites at which the equilibrium dissociation constant (KD) for NBMPR was 0.10-0.25 nM and which possessed a maximum binding capacity (Bmax) per mg of protein of 300 fmol of NBMPR. Kinetic analysis of the site-specific binding of NBMPR yielded an independent estimate of the KD of 0.16 nM. A relatively homogeneous subcellular distribution of the sites for NBMPR was found in cortical tissue. Recognized inhibitors of nucleoside transport were potent, competitive inhibitors of the binding of NBMPR in guinea pig CNS membranes whereas benzodiazepines and phenothiazines have low affinity for the sites. NBMPR sites in guinea pig cortical membranes have characteristics similar to those for NBMPR in human erythrocytes, the occupation of which is associated with inhibition of nucleoside transport. The comparable affinities for a range of agents for sites in human erythrocytes and guinea pig CNS membranes suggest that NBMPR also binds to transport inhibitory elements of the guinea pig CNS nucleoside transport system. It is proposed that the study of the binding of NBMPR provides an effective method by which to examine drug interactions with the membrane-located nucleoside transport system in CNS membranes.  相似文献   

3.
Identification of the Adenosine Uptake Sites in Guinea Pig Brain   总被引:3,自引:0,他引:3  
Nitrobenzylthioinosine (NBMPR), a potent and specific inhibitor of nucleoside transport, was employed as a photolabile probe of the adenosine transporter in guinea pig brain membranes. Reversible, high-affinity binding of [3H]NBMPR to a crude preparation of guinea pig brain membranes was demonstrated (apparent KD 0.075 +/- 0.012 nM; Bmax values of 0.24 +/- 0.04 pmol/mg protein). Adenosine, uridine, dipyridamole, and nitrobenzylthioguanosine inhibited high-affinity binding. Low concentrations of cyclohexoadenosine (10-300 nM) had no effect on NBMPR binding. These properties of the high-affinity NBMPR binding sites were consistent with NBMPR binding to the nucleoside transport protein. Exposure of brain membranes in the presence of [3H]NBMPR and dithiothreitol, a free-radical scavenger, to ultraviolet light resulted in covalent incorporation of 3H into polypeptides of apparent MW 66,000-45,000, a value similar to that for the human erythrocyte nucleoside transporter. Covalent attachment of [3H]NBMPR was inhibited by adenosine, dipyridamole, and nitrobenzylthioguanosine.  相似文献   

4.
The transport of [3H]adenosine at 22°C was investigated in guinea pig cerebral cortical synaptosomes using an inhibitor-stop filtration method. Under these conditions adenosine was not significantly metabolized during the incubation period used to determine the initial rates of adenosine transport. The dose response curves for the inhibition of adenosine transport by nitrobenzylthioinosine (NBMPR), dilazep and dipyridamole were biphasic—approx. 50–60% of the transport activity was inhibited with IC50 values of 0.7, 1 and 9 nM respectively, but the remaining activity was insensitive to concentrations as high as 1 μ M. Adenosine influx by both components was saturable (Km values of 17 ± 3 and 68 ± 8 μ M; Vmax values of 2.8 ± 0.3 and 6.1 ± 0.4 pmol/mg protein per s for NBMPR-sensitive and -insensitive components, respectively), and inhibited by other nucleosides and benzodiazepines. The two transport components also differed in their sensitivity to inhibition by other nucleosides and benzodiazepines indicating that the NBMPR-sensitive component of nucleoside transport in guinea pig synaptosomes exhibits a higher affinity than the NBMPR-insensitive component. However, both components have a broad specificity. Inhibition of adenosine transport by NBMPR was associated with high affinity binding of NBMPR to the synaptosomes (Kd 88 ± 6 pM). Binding of NBMPR to these sites was blocked by dilazep and dipyridamole with K1 values similar to those measured for inhibiting NBMPR-sensitive adenosine influx. These results, together with previous findings using NBMPR and dipyridamole as ligand probes, suggest that there are two components of nucleoside transport in mammalian cerebral cortical synaptosomes that differ in their sensitivity to inhibition by NBMPR and other transport inhibitors.  相似文献   

5.
The binding of [3H]nitrobenzylthioinosine (NBMPR) to specific sites in CNS membranes was investigated using cortical tissue from a variety of mammalian species. Mass law analysis of the site-specific binding of NBMPR data revealed that rat, mouse, guinea pig, and dog cortical membranes each contained an apparent single class of high-affinity (KD 0.11-4.9 nM) binding sites for NBMPR; rabbit cortical membranes, however, exhibited two distinct classes of NBMPR binding sites with KD values of 0.4 nM and 13.8 nM. Dipyridamole, a potent inhibitor of nucleoside transport, produced a biphasic profile of inhibition of the binding of NBMPR to guinea pig, rabbit, and dog membranes (IC50 less than 20 nM and IC50 greater than 6 microM for NBMPR binding sites displaying high and low affinity for dipyridamole, respectively). These results are indicative of heterogeneity of NBMPR binding sites in mammalian cortical membranes. Rat and mouse cortical membranes appear to possess only one type of NBMPR binding site, which has low affinity for dipyridamole. Detailed analysis of inhibitor-induced dissociation of NBMPR from its sites in each species led to the conclusion that these multiple forms of NBMPR binding sites are different conformations of a single site associated with the CNS nucleoside transport system, rather than two distinct sites. It is also suggested that the affinity of dipyridamole for each conformation of NBMPR site indicates the susceptibility of that conformation of the nucleoside transport system to inhibition by dipyridamole.  相似文献   

6.
Nitrobenzylthioinosine (NBMPR) was employed as a probe of the nucleoside transporters from rat and guinea-pig liver. Purified liver plasma membranes prepared on self-generating Percoll density gradients exhibited 16-fold (rat) and 10-fold (guinea pig) higher [3H]NBMPR-binding activities than in crude liver homogenates (3.69 and 14.7 pmol/mg of protein for rat and guinea-pig liver membranes respectively, and 0.23 and 1.47 pmol/mg of protein for crude liver homogenates respectively). Binding to membranes from both species was saturable (apparent Kd 0.14 and 0.63 nM for rat and guinea-pig membranes respectively) and inhibited by uridine, adenosine, nitrobenzylthioguanosine (NBTGR) and dilazep. Uridine was an apparent competitive inhibitor of high-affinity NBMPR binding to rat membranes (apparent Ki 1.5 mM). There was a marked species difference with respect to dipyridamole inhibition of NBMPR binding (50% inhibition at 0.2 and greater than 100 microM for guinea-pig and rat respectively). These results are consistent with a role of NBMPR-binding proteins in liver nucleoside transport. Exposure of rat and guinea pig membranes to high-intensity u.v. light in the presence of [3H]NBMPR resulted in the selective radio-labelling of membrane proteins which migrated on sodium dodecyl sulphate/polyacrylamide gels with apparent Mr values in the same range as that of the human erythrocyte nucleoside transporter (45 000-66 000). Covalent labelling of these proteins was abolished when photolysis was performed in the presence of non-radio-active NBTGR as competing ligand.  相似文献   

7.
Dipyridamole (DPR) and nitrobenzylthioinosine (NBI) inhibition of adenosine accumulation in synaptoneurosomes derived from rat cerebral cortex, rat cerebellum, guinea pig cerebral cortex and guinea pig cerebellum was investigated. The inhibition of adenosine accumulation by NBI was observed to be distinctly biphasic in both guinea pig and rat synaptoneurosomes. Such biphasic inhibition consisted of a nM potency component to inhibition, accounting for 20–30% of the maximum inhibition, and a μM potency component, accounting for the remaining 70–80% maximum inhibition. Such an inhibitory profile contrasts sharply with that of DPR which appears monophasic, with a mean IC50 of between 10−7 M and 10−6 M, in all rat and guinea pig synaptoneurosomes preparations studied.Further differences between the potency of NBI and DPR in inhibiting [3H]adenosine accumulation were also noted. DPR was more potent in inhibiting [3H]adenosine accumulation in guinea pig cerebellar synaptoneurosomes than in cerebral cortex synaptoneurosomes. In rat synaptoneurosomes, the reverse selectivity was observed. DPR was also 2–6 fold (depending on brain region of comparison) more potent in inhibiting adenosine accumulation in guinea pig synaptoneurosomes than in inhibiting such accumulation in rat synaptoneurosomes. In contrast, NBI was approximately equipotent in inhibiting adenosine accumulation in rat and guinea pig synaptoneurosomes. Additional binding studies using [3H]NBI are also reported. The data presented are entirely consistent with the hypotheses that (1) NBI and DPR bind to functionally relevant sites and (2) there are different populations of nucleoside transporters in mammalian brain.  相似文献   

8.
Binding of the potent nucleoside transport inhibitor [3H]nitrobenzylthioinosine to rat and guinea pig lung membranes was investigated. Reversible high-affinity binding was found in both species (apparent KD approximately 0.3nM). Binding was inhibited by nitrobenzylthioguanosine, adenosine and uridine. Dipyridamole was also an effective inhibitor of [3H]nitrobenzylthioinosine binding to guinea pig membranes. In contrast, rat membranes were relatively insensitive to dipyridamole. Exposure of site-bound [3H]nitrobenzylthioinosine to high intensity U.V. light resulted in the photoaffinity labelling of lung proteins with apparent molecular weights similar to that of the human erythrocyte nucleoside transporter (45,000-65,000).  相似文献   

9.
Membranes from guinea-pig lung exhibited high-affinity binding of [3H]dipyridamole, a potent inhibitor of nucleoside transport. Binding (apparent KD 2 nM) was inhibited by the nucleoside-transport inhibitors nitrobenzylthioinosine (NBMPR), dilazep and lidoflazine and by the transported nucleosides uridine and adenosine. In contrast, there was no detectable high-affinity binding of [3H]dipyridamole to lung membranes from the rat, a species whose nucleoside transporters exhibit a low sensitivity to dipyridamole inhibition. Bmax. values for high-affinity binding of [3H]dipyridamole and [3H]NBMPR to guinea-pig membranes were similar, suggesting that these structurally unrelated ligands bind to the NBMPR-sensitive nucleoside transporter with the same stoichiometry.  相似文献   

10.
The role of nucleoside transport in ischemia-reperfusion injury and arrhythmias has been well documented in various animal models using selective blockers. However, clinical application of nucleoside transport inhibitors remains to be demonstrated in humans. It is not known whether human heart has nucleoside transport similar to that of animals. The aim of this study is to pharmacologically identify the presence of nucleoside transport binding sites in the human myocardium compared to animals.Myocardial tissue was obtained from guinea pig left and right ventricle, canine left ventricle, human intraoperative right atrium and human cadaveric right atrium and right and left ventricles. Myocardial preparations were obtained from tissue samples after homogenized and a differential centrifugation.Equilibrium binding assays were performed using [3H]-p-nitrobenzylthioinosine (NBMPR) at room temperature in the presence or absence of non-radioactive NBMPR or other nucleoside transport blockers such as p-nitrobenzylthioguanosine dipyridamole, lidoflazine, papaverin, adenosine and doxorubcine. From saturation curves and inhibition kinetics, we determined the relative maximal binding (Bmax) and dissociation constant (Kd) of [3H]-NBMPR binding of human myocardial preparations.Results demonstrated that the fresh human myocardial preparations have a specific binding site for NBMPR with a Bmax of 283 ± 32 fmol/mg protein and Kd of 0.56 ± 0.12 nM. These values are lower than those obtained from guinea pigs (Bmax = 1440 ± 187 fmol/mg protein and Kd = 0.21 ± 0.03 nM) and canine atrium (Bmax 594 ± 73 fmol/mg protein, and Kd = 1.12 ± 0.22 nM).Displacement kinetics studies revealed the relative potencies (of certain unrelated drugs as follow: p-nitrobenzylthioguanosine > dipyridamole > lidoflazine > pavaverine > Diltazam > adenosine > doxyrubicin. It is concluded that human myocardium contains an active nucleoside transport site which may play a crucial role in post-ischemic reperfusion-mediated injury in a wide spectrum of ischemic syndromes.  相似文献   

11.
A series of nucleoside transport inhibitors has been tested for their ability to displace [3H]diazepam binding to CNS membranes. No correlation between their potency as [3H]adenosine uptake blockers and as inhibitors of [3H]diazepam binding was found, either in rat or guinea-pig brain tissue. Dipyridamole, a potent adenosine transport inhibitor interacted strongly (Ki = 54 nM) with peripheral-type benzodiazepine binding sites (“acceptor sites”) and was 4–5 fold weaker in displacing [3H]methylclonazepam and [3H]Ro15-1788, ligands selective for the specific central benzodiazepine “receptor”. Unlike the benzodiazepines, dipyridamole had no anticonvulsant action against metrazole-induced convulsions in mice. Ro5-4864, a benzodiazepine which selectively interacts with the peripheral-type benzodiazepine binding site, was approximately equipotent with diazepam in inhibiting [3H]adenosine uptake in brain tissue. These results do not support the idea of a very close link between high-affinity central binding sites for clinically-active benzodiazepines and the adenosine uptake site. The possibility of a connection between benzodiazepine “acceptor” sites and the membrane nucleoside transporter is discussed.  相似文献   

12.
The relationship between the nucleoside transport system and the nitrobenzylthioinosine-sensitive and -resistant [3H]dipyridamole binding sites was examined by comparing the characteristics of [3H]dipyridamole binding with those of [3H]nitrobenzylthioinosine binding and [3H]-uridine influx in rabbit and guinea pig cerebral cortical synaptosomes. Two distinct high-affinity synaptosomal membrane-associated [3H]dipyridamole binding sites, with different sensitivities to inhibition by nitrobenzylthioinosine, were characterized in the presence of 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS, 0.01%) to prevent [3H]dipyridamole binding to glass tubes and filters. The nitrobenzylthioinosine-resistant [3H]-dipyridamole binding sites represented a greater proportion of the total membrane sites in guinea pig than in rabbit (40 vs. 10% based on inhibition studies). In rabbit, nitrobenzylthioinosine-sensitive [3H]dipyridamole binding (KD = 1.4 +/- 0.2 nM) and [3H]nitrobenzylthioinosine binding (KD = 0.30 +/- 0.01 nM) appeared to involve the same membrane site associated with the nitrobenzylthioinosine-sensitive nucleoside transporter. By mass law analysis, [3H]-dipyridamole binding in guinea pig could be resolved into two components based on sensitivity to inhibition by 1 microM nitrobenzylthioinosine. The nitrobenzylthioinosine-resistant [3H]dipyridamole binding sites were relatively insensitive to inhibition by all of the nucleoside transport substrates and inhibitors tested, with the exception of dipyridamole itself. In guinea pig synaptosomes, 100 microM dilazep blocked nitrobenzylthioinosine-resistant [3H]uridine transport completely but inhibited the nitrobenzylthioinosine-resistant [3H]dipyridamole binding component by only 20%. Furthermore, a greater percentage of the [3H]dipyridamole binding was nitrobenzylthioinosine resistant in guinea pig compared with rabbit, yet both species had a similar percentage of nitrobenzylthioinosine-resistant [3H]uridine transport.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Nitrobenzylthioinosine (NBMPR) was employed as a covalent probe of the erythrocyte nucleoside transporter. This nucleoside analogue, a potent inhibitor of nucleoside transport, binds tightly (KD = 10(-10) - 10(-9) M) but reversibly to specific sites on the carrier mechanism. High intensity UV irradiation of intact human erythrocytes, isolated "ghosts," and "protein-depleted" membranes in the presence of [3H]NBMPR and dithiothreitol (as a free radical scavenger) under nonequilibrium and equilibrium binding conditions resulted in selective covalent incorporation of 3H into the band 4.5 region of sodium dodecyl sulfate-polyacrylamide gels (Mr = 45,000-65,000). Covalent labeling of band 4.5 protein(s) under equilibrium binding conditions was inhibited by nitrobenzylthioguanosine, dipyridamole, uridine, and adenosine. A similar photolabeling pattern was observed using membranes from pig erythrocytes. In contrast, no incorporation of radioactivity into band 4.5 was observed under equilibrium binding conditions with membranes from nucleoside-impermeable sheep erythrocytes. These experiments suggest that the human and pig erythrocyte nucleoside transporters are band 4.5 polypeptides, a conclusion supported by previous isolation studies based on the assay of reversible [3H]NBMPR binding activity.  相似文献   

14.
The density of high affinity binding sites for [3H]4'-chlorodiazepam [( 3H]Ro 5-4864) in guinea pig cerebral cortex is significantly higher (3.8-fold) than the density reported in the rat, and is nearly equal to the density of binding sites for other [3H]benzodiazepines (e.g., diazepam, flunitrazepam). The density of these [3H]Ro 5-4864 binding sites was generally higher in guinea pig brain than in rat brain, with the exception of olfactory bulb. Both the subcellular distribution and pharmacologic profile of these sites in guinea pig brain appears qualitatively similar to observations previously reported in the rat. The high density of binding sites for [3H]Ro 5-4864, coupled with the potency of this compound as a convulsant in the guinea pig, suggest this species will be a valuable model for elucidating putative pharmacologic and physiologic functions of these sites in brain.  相似文献   

15.
We examined myocardial 5'-adenosine monophosphate (5'-AMP) catabolism, adenosine salvage and adenosine responses in perfused guinea pig, rat and mouse heart. MVO(2) increased from 71+/-8 microl O(2)/min per g in guinea pig to 138+/-17 and 221+/-15 microl O(2)/min per g in rat and mouse. VO(2)/beat was 0.42+/-0.03, 0.50+/-0.03 and 0.55+/-0.04 microl O(2)/g in guinea pig, rat and mouse, respectively. Resting and peak coronary flows were highest in mouse vs. rat and guinea pig, and peak ventricular pressures and Ca(2+) sensitivity declined as heart mass increased. Net myocardial 5'-AMP dephosphorylation increased significantly as mass declined (3.8+/-0.5, 9.0+/-1.4 and 11.0+/-1.6 nmol/min per g in guinea pig, rat and mouse, respectively). Despite increased 5'-AMP catabolism, coronary venous [adenosine] was similar in guinea pig, rat and mouse (45+/-8, 69+/-10 and 57+/-14 nM, respectively). Comparable venous [adenosine] was achieved by increased salvage vs. deamination: 64%, 41% and 39% of adenosine formed was rephosphorylated while 23%, 46%, and 50% was deaminated in mouse, rat and guinea pig, respectively. Moreover, only 35-45% of inosine and its catabolites derive from 5'-AMP (vs. IMP) dephosphorylation in all species. Although post-ischemic purine loss was low in mouse (due to these adaptations), functional tolerance to ischemia decreased with heart mass. Cardiovascular sensitivity to adenosine also differed between species, with A(1) receptor sensitivity being greatest in mouse while A(2) sensitivity was greatest in guinea pig. In summary: (i) cardiac 5'-AMP dephosphorylation, VO(2), contractility and Ca(2+) sensitivity all increase as heart mass falls; (ii) adaptations in adenosine salvage vs. deamination limit purine loss and yield similar adenosine levels across species; (iii) ischemic tolerance declines with heart mass; and (iv) cardiovascular sensitivity to adenosine varies, with increasing A(2) sensitivity relative to A(1) sensitivity in larger hearts.  相似文献   

16.
A number of benzodiazepines were tested for their ability to inhibit the site-specific binding of nitrobenzylthioinosine to the nucleoside transport system in human erythrocytes. Dipyridamole, a recognized inhibitor of nucleoside transport, inhibited binding in a competitive manner. Benzodiazepines also inhibited nitrobenzylthioinosine binding competitively, but were considerably less potent in that respect than dipyridamole. The low affinities of the benzodiazepines for the erythrocyte transport system suggest that significant inhibition of nucleoside transport may not occur at anxiolytic concentrations. However, at higher concentrations, some benzodiazepines would appear to have the potential to inhibit adenosine transport via interaction with the transport-inhibitory site.  相似文献   

17.
Nucleoside Transporter of Cerebral Micro vessels and Choroid Plexus   总被引:1,自引:0,他引:1  
The nucleoside transporter of cerebral microvessels and choroid plexus was identified and characterized using [3H]nitrobenzylthioinosine (NBMPR) as a specific probe. [3H]NBMPR bound reversibly and with high affinity to a single specific site in particulate fractions of cerebral microvessels, choroid plexus, and cerebral cortex of the rat and the pig. The dissociation constants (KD 0.1-0.7 nM) were similar in the various tissue preparations from each species, but the maximal binding capacities (Bmax) were about fivefold higher in cerebral microvessels and choroid plexus than in the cerebral cortex. Nitrobenzylthioguanosine and dipyridamole were the most potent competitors for [3H]NBMPR binding. Several naturally occurring nucleosides displaced specific [3H]NBMPR binding to cerebral microvessels in vitro, in a rank order that correlated well with their ability to cross the blood-brain barrier in vivo. Adenosine analogues and theophylline were less effective in displacing [3H]NBMPR binding than in displacing adenosine receptor ligands. Photoactivation of cerebral microvessels and choroid plexus bound with [3H]NBMPR followed by solubilization and polyacrylamide gel electrophoresis labeled a protein(s) with a molecular weight of approximately 60,000. These results indicate that cerebral microvessels and choroid plexus have a much higher density of the nucleoside transporter moiety than the cerebral cortex and that this nucleoside transporter has pharmacological properties and a molecular weight similar to those of erythrocytes and other mammalian tissues.  相似文献   

18.
The accumulation of [2-3H]adenosine was measured in slices prepared from 7 regions of the guinea-pig central nervous system. There was a similar level of uptake in forebrain regions (cerebral cortex, striatum, hippocampus and midbrain), a lower level in the cerebellum, with lowest uptake in the pons-medulla and spinal cord. Uptake in all regions was strongly inhibited by the nucleoside transport inhibitor dipyridamole and by 5-iodotubercidin, an adenosine kinase inhibitor. The activity of adenosine kinase was similar in crude supernatants prepared from 8 regions of the guinea-pig and rat brain, with the exception of the spinal cord (lower activity than other regions in the guinea-pig CNS) and olfactory bulb (higher activity than other regions in the rat CNS). 5-Nitrobenzylthioinosine (NBMPR) and related thiopurines produced about 50% inhibition of adenosine uptake into guinea-pig cerebral cortex slices at 200 nM but increasing the concentration did not produce significant further inhibition. [3H]NBMPR has been proposed as a useful tight-binding ligand for nucleoside transport sites in various tissues but it is suggested that the distribution of such binding sites in different regions of the CNS may not directly reflect the adenosine uptake capacity of these regions1. Data suggest that there may be NBMPR-sensitive and -insensitive sites. Results confirm those of previous studies which suggest that intracellular adenosine kinase plays an important part in the uptake of adenosine in guinea-pig brain. The relatively homogeneous distribution of adenosine uptake activity in the brain contrasts with the heterogeneous distribution of A1-adenosine receptors in the CNS.  相似文献   

19.
The aim of the present study was to investigate the effect of hyperthyroidism on the trans-sarcolemmal adenosine (Ado) flux via equilibrative and nitrobenzylthioinosine (NBTI)-sensitive nucleoside transporters (ENT1) in guinea pig atria, by assessing the change in the Ado concentration of the interstitial fluid ([Ado]ISF) under nucleoside transport blockade with NBTI. For the assessment, we applied our novel method, which estimates the change in [Ado]ISF utilizing the altered inotropic response to N6-cyclopentyladenosine (CPA), a relative stable selective agonist of A1 Ado receptors, by providing a relative index, the equivalent concentration of CPA. Our results show an interstitial A do accumulation upon ENT1 blockade, which was more extensive in the hyperthyroid samples (CPA concentrations equieffective with the surplus [Ado]ISF were two to three times higher in hyperthyroid atria than in euthyroid ones, with regard to the negative inotropic effect of CPA and Ado). This suggests an enhanced Ado influx via ENT1 in hyperthyroid atria. It is concluded that hyperthyroidism does not alter the prevailing direction of the Ado transport, moreover intensifies the Ado influx in the guinea pig atrium.  相似文献   

20.
In an attempt to investigate the role of nucleoside transporter function in the hypertensive state, we have compared the binding of [3H]nitrobenzylthioinosine ([3H]NBMPR), a nucleoside transporter probe, in membranes prepared from platelet, renal, pulmonary, cardiac and brain tissues of spontaneously hypertensive rats (SHR) to those of age-matched Wistar-Kyoto (WKY) controls. At 4 weeks of age, [( 3H]NBMPR) binding sites (Bmax) increased in the kidney of SHR but decreased in platelets, whereas no changes were found in the heart, lung or brain. At 18 weeks of age, [3H]NBMPR binding sites (Bmax) remained increased in the kidney and decreased in platelets with no changes in the other tissues. The only change in apparent binding affinity (KD) was an increase in the heart of SHR at 4 weeks. Age-dependent decreases were also observed in the heart and platelets of both SHR and WKY at 18 weeks. The results indicate that the changes in binding characteristics may be due to a combination of the pharmacodynamic differences between the strains, age, as well as to the pathogenesis of hypertension. Consequently, it cannot be concluded that the altered binding characteristics are the result of the elevated blood pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号