首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The N-methyl-d-aspartate (NMDA) receptor has four membrane-associated domains, three of which are membrane-spanning (M1, M3, and M4) and one of which is a re-entrant pore loop (M2). The M1-M3 domains have been demonstrated to influence the function of the ion channel, but a similar role for the M4 domain has not been reported. We have identified a methionine residue (Met(823)) in the M4 domain of the NR2A subunit that regulates desensitization and ion channel gating. A tryptophan substitution at this site did not alter the EC(50) for glycine or the peak NMDA EC(50) but decreased the steady-state NMDA EC(50) and markedly increased apparent desensitization, mean open time, and peak current density. Results of rapid solution exchange experiments revealed that changes in microscopic desensitization rates and closing rates could account for the changes in macroscopic desensitization, steady-state NMDA EC(50), and current density. Other amino acid substitutions at this site could increase or decrease the rate of desensitization and mean open time of the ion channel. Both mean open time and desensitization were dependent primarily upon the hydrophobic character of the amino acid at the position. These results demonstrate an important role for hydrophobic interactions at Met(823) in regulation of NMDA receptor function.  相似文献   

2.
Selectins are receptors that mediate leukocyte adhesion to platelets or endothelial cells through Ca(2+)-dependent interactions with cell surface oligosaccharides. We found that peptides corresponding to residues 23-30, 54-63, and 70-79 of the N-terminal lectin domain of P-selectin inhibited leukocyte adhesion to P-selectin. Peptides corresponding to the homologous 23-30 and 54-63 regions of E-selectin and L-selectin also prevented cell binding to P-selectin. Immobilized albumin conjugates of the three P-selectin peptides supported adhesion of myeloid cells and certain other cells expressing fucosylated oligosaccharides. Ca2+ was required for optimal cell adhesion to the conjugates containing the 23-30 and 54-63 sequences. Furthermore, Ca2+ interacted with the 23-30 and 54-63 peptides of all three selectins, as detected by changes in intrinsic fluorescence emission intensity. These data suggest that residues contained within the 23-30 and 54-63 regions of the selectins represent contact sites for carbohydrate structures on target cells. Furthermore, binding of Ca2+ to these sequences may directly enhance their ability to interact with cell surface ligands.  相似文献   

3.
4.
This paper describes the synthesis of several novel T-type calcium channel antagonists that inhibit calcium influx into the cell, which in turn regulates unknown aspects of the cell cycle pathway that are responsible for cellular proliferation. A library of compounds was synthesized and a brief structure activity relationship will be described. From these studies we have identified a compound (1) that displays anti-proliferative activity in the low micromolar range across a variety of cancer cell lines.  相似文献   

5.
1. We have found that, in preparations of isolated CNS of the pond snail Lymnaea stagnalis, both serotonin (5HT) and dopamine (DA), as well as their respective precursors, 5HTP and DOPA, are effective in producing fictive intense (muscular) locomotion. 2. Phase-coupled to each of the above pedal rhythms are numerous identifiable pedal neurons including the respiratory interneuron RPeD1, thus suggesting interaction between networks responsible for locomotion and air breathing. 3. The novel DA/DOPA-dependent motor rhythm resembles the 5HT/5HTP-dependent one in terms of activity of identifiable pedal neurons, being however considerably slower than the latter. 4. The results of transection experiments suggest that each of the rhythms is generated by a paired CPG lying entirely within the pedal ganglia.  相似文献   

6.
V D Kumar  I T Weber 《Biochemistry》1992,31(19):4643-4649
The structure of the cyclic GMP-binding domain of the cyclic GMP-gated ion channel from bovine retinal rod photoreceptors has been modeled by analogy to the crystal structure of the homologous cyclic AMP-binding domain of catabolite gene activator protein (CAP). The modeled cyclic GMP-binding domain has a three-residue deletion and a five-residue insertion between beta strands compared to CAP. The major interactions of the ion channel with cyclic GMP are similar to those observed for cyclic AMP bound to CAP and predicted for cGMP bound to the cGMP-dependent protein kinase: Gly 543 and Glu 544 make hydrogen-bond interactions with the ribose 2'-OH, Arg 559 forms an ion pair with the charged phosphate oxygen, and Thr 560 forms hydrogen-bond interactions with an exocyclic phosphate oxygen and with the 2-amino group of cGMP. Three additional potential interactions were predicted from the model structure. Ile 545 O and Ser 546 OH form hydrogen-bond interactions with an exocyclic phosphate oxygen, and Phe 533 may interact with the aromatic ring of cGMP. This model is in agreement with both the analogue binding experiments and the mutational analysis of Thr 560.  相似文献   

7.
The acid-sensitive ion channel 1 (ASIC1alpha or BNaC2a) is the most abundant of all mammalian proton-gated ion channels and the one that has the broadest distribution in the nervous system. Hallmarks of ASIC1alpha are gating by external protons and rapid desensitization. In sensory neurons ASIC1 may constitute a nociceptor for pain induced by local acidification, whereas in central neurons it may modulate synaptic activity. To gain insight into the functional roles of ASIC1, we cloned and examined the properties of the evolutionarily distant species toadfish (Opsanus tau), approximately 420-million year divergent from mammals. Analysis of the protein sequence from fish ASIC1 revealed 76% amino acid identity with the rat orthologue. The regions of highest conservation are the second transmembrane domain and the ectodomain, whereas the amino and carboxyl termini and first transmembrane domain are poorly conserved. At the functional level, fish ASIC1 is gated by external protons with a half-maximal activation at pHo 5.6 and a half-maximal inactivation at pHo 7.30. The fish differs from the rat channel on having a 25-fold faster rate of desensitization. Functional studies of chimeras made from rat and fish ASIC1 indicate that the extracellular domain specifically, a cluster of three residues, confers the faster desensitization rate to the fish ASIC1.  相似文献   

8.
Skeletal muscle dystrophin is a 427 kDa protein thought to act as a link between the actin cytoskeleton and the extracellular matrix. Perturbations of the dystrophin-associated complex, for example, between dystrophin and the transmembrane glycoprotein beta-dystroglycan, may lead to muscular dystrophy. Previously, the cysteine-rich region and first half of the carboxy-terminal domain of dystrophin were shown to interact with beta-dystroglycan through a stretch of fifteen amino acids at the carboxy-terminus of beta-dystroglycan. This region of dystrophin implicated in binding beta-dystroglycan contains four modular protein domains: a WW domain, two putative Ca2+-binding EF-hand motifs, and a putative zinc finger ZZ domain. The WW domain is a globular domain of 38-40 amino acids with two highly conserved tryptophan residues spaced 20-22 amino acids apart. A subset of WW domains was shown to bind ligands that contain a Pro-Pro-x-Tyr core motif (where x is any amino acid). Here we elucidate the role of the WW domain of dystrophin and surrounding sequence in binding beta-dystroglycan. We show that the WW domain of dystrophin along with the EF-hand motifs binds to the carboxy-terminus of beta-dystroglycan. Through site-specific mutagenesis and in vitro binding assays, we demonstrate that binding of dystrophin to the carboxy-terminus of beta-dystroglycan occurs via a beta-dystroglycan Pro-Pro-x-Tyr core motif. Targeted mutagenesis of conserved WW domain residues reveals that the dystrophin/beta-dystroglycan interaction occurs primarily through the WW domain of dystrophin. Precise mapping of this interaction could aid in therapeutic design.  相似文献   

9.
In the presence of ATP, unphosphorylated smooth muscle myosin can form a catalytically inactive monomer that sediments at 10 Svedbergs (10 S). The tail of 10 S bends into thirds and interacts with the regulatory domain. ADP-P(i) is "trapped" at the active site, and consequently the ATPase activity is extremely low. We are interested in the structural basis for maintenance of this off state. Our prior photocross-linking work with 10 S showed that tail residues 1554-1583 are proximal to position 108 in the C-terminal lobe of one of the two regulatory light chains ( Olney, J. J., Sellers, J. R., and Cremo, C. R. (1996) J. Biol. Chem. 271, 20375-20384 ). These data suggested that the tail interacts with only one of the two regulatory light chains. Here we present data, using a photocross-linker on position 59 on the N-terminal lobe of the regulatory light chain (RLC), demonstrating that both regulatory light chains of a single molecule can cross-link to the light meromyosin portion of the tail. Mass spectrometric data show four specific cross-linked regions spanning residues 1428-1571 in the light meromyosin portion of the tail, consistent with cross-linking two RLC to one light meromyosin. In addition, we find that position 59 can cross-link internally to residues 42-45 within the same RLC subunit. The internal cross-link only forms in 10 S and not in unphosphorylated heavy meromyosin (lacking the light meromyosin), suggesting a structural rearrangement within the RLC attributed to the interaction of the tail with the head.  相似文献   

10.
The low density lipoprotein (LDL) receptor plays a major role in maintaining human plasma cholesterol levels and mutations in the gene cause familial hypercholesterolemia. The LDL receptor (LDLR) pathway has been well characterized, but little is known of proteins involved in its complex intracellular sorting and trafficking. Sorting nexin 17 (SNX17) has recently been implicated in LDLR intracellular trafficking. We show here that endogenous SNX17 is highly expressed in several cell types and is localized partially in early endosomes. We found that the PX domain of SNX17 is required for its endosomal localization but does not interact directly with the LDL receptor. A novel domain containing a FERM-like domain of SNX17 is needed for its interaction with the LDL receptor. Mutations in the NPXY motif of the LDL-receptor cytoplasmic tail that disrupt internalization also disrupt its interaction with SNX17, whereas mutations elsewhere had little effect. When transiently overexpressed in Chinese hamster ovary cells, SNX17 localized to large vesicular structures and disrupted normal trafficking of the LDL receptor in a PX domain-dependent manner. These results suggest that SNX17 plays a role in the cellular trafficking of the LDL receptor through interaction with the NPVY motif in its cytoplasmic domain and interaction of the PX domain with subcellular membrane compartments.  相似文献   

11.
12.
13.
14.
The immunosuppressive agent rapamycin induces inactivation of p70s6k with no effect on other mitogen-activated kinases. Here we have employed a combination of techniques, including mass spectrometry, to demonstrate that this effect is associated with selective dephosphorylation of three previously unidentified p70s6k phosphorylation sites: T229, T389 and S404. T229 resides at a conserved position in the catalytic domain, whose phosphorylation is essential for the activation of other mitogen-induced kinases. However, the principal target of rapamycin-induced p70s6k inactivation is T389, which is located in an unusual hydrophobic sequence outside the catalytic domain. Mutation of T389 to alanine ablates kinase activity, whereas mutation to glutamic acid confers constitutive kinase activity and rapamycin resistance. The importance of this site and its surrounding motif to kinase function is emphasized by its presence in a large number of protein kinases of the second messenger family and its conservation in putative p70s6k homologues from as distantly related organisms as yeast and plants.  相似文献   

15.
The macrophage scavenger receptor (MSR) is a trimeric membrane protein which binds to modified low-density lipoprotein (LDL) and has been indicated in the development of atherosclerosis. It has recently been demonstrated that the N-terminal cytoplasmic domain of MSR has an important role in the efficient internalization and cell-surface expression of the receptor. This study shows that the N-terminal cytoplasmic domain in bovine was constructed using a peptide architecture technique in which the peptide chain was bundled at their C-terminus to yield a trimeric form and that this did not form an ordered structure. Furthermore, the binding proteins to the cytoplasmic domain of MSR were determined for the first time using a peptide affinity column. Sequence analyses of the specific binding proteins in bovine revealed that heat shock protein 90 (HSP90), heat shock protein 70 (HSP70), leucine aminopeptidase (LAP), adenocylhomocysteinase, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were included. GST-pull-down assay and immunoprecipitation analyses on HSP90, HSP70, and GAPDH showed that all these proteins could bind to the cytoplasmic domain of MSR in vitro and in vivo. These proteins interact with the cytoplasmic domain directly and may have an effect on the functions of MSR such as internalization, cell-surface expression, and signal transduction.  相似文献   

16.
The ETS domain of murine PU.1 tolerates a large number of DNA cognates bearing a central consensus 5'-GGAA-3' that is flanked by a diverse combination of bases on both sides. Previous attempts to define the sequence selectivity of this DNA binding domain by combinatorial methods have not successfully predicted observed patterns among in vivo promoter sequences in the genome, and have led to the hypothesis that energetic coupling occurs among the bases in the flanking sequences. To test this hypothesis, we determined, using thermodynamic cycles, the complex stabilities and base coupling energies of the PU.1 ETS domain for a set of 26 cognate variants (based on the lambdaB site of the Ig(lambda)2-4 enhancer, 5'-AATAAAAGGAAGTGAAACCAA-3') in which flanking sequences up to three bases upstream and/or two bases downstream of the core consensus are substituted. We observed that both cooperative and anticooperative coupling occurs commonly among the flanking sequences at all the positions investigated. This phenomenon extends at least three bases in the 5' side and is, at least on our experimental data, due exclusively to pairwise interactions between the flanking bases, and not changes in the local environment of the DNA groove floor. Energetic coupling also occurs between the flanking sides across the core consensus, suggesting long-range conformational effects along the DNA target and/or in the protein. Our data provide an energetic explanation for the pattern of flanking bases observed among in vivo promoter sequences and reconcile the apparent discrepancies raised by the combinatorial experiments. We also discuss the significance of base coupling in light of an indirect readout mechanism in ETS/DNA site recognition.  相似文献   

17.
Novel NR2B antagonists with an amide tether were found by an approach to avoid pharmacophoric similarity to dofetilide. Structure-activity relationship investigation led to N-[cis-4-hydroxy-4-(5-hydroxypyridin-2-yl)cyclohexyl]-3-henylpropanamide as an orally active NR2B-subtype selective N-methyl-D-aspartate (NMDA) receptor antagonist with very weak HERG (human ether-a-go-go related gene) binding (IC(50)> 30 microM). This compound exhibited potent in vivo anti-allodynic activity in the mouse partial sciatic nerve ligation (PSL) model (minimum effective dose=10 mg/kg, po).  相似文献   

18.
We have recently compared the biophysical and pharmacological properties of native Ca(2+)-activated Cl(-) currents in murine portal vein with mCLCA1 channels cloned from murine portal vein myocytes (Britton, F. C., Ohya, S., Horowitz, B., and Greenwood, I. A. (2002) J. Physiol. (Lond.) 539, 107-117). These channels shared a similar relative permeability to various anions, but the expressed channel current lacked the marked time dependence of the native current. In addition, the expressed channel showed a lower Ca(2+) sensitivity than the native channel. As non-pore-forming regulatory beta-subunits alter the kinetics and increase the Ca(2+) sensitivity of Ca(2+)-dependent K(+) channels (BK channels) we investigated whether co-expression of beta-subunits with CLCA1 would alter the kinetics/Ca(2+) sensitivity of mCLCA1. Internal dialysis of human embryonic kidney cells stably expressing CLCA1 with 500 nM Ca(2+) evoked a significantly larger current when the beta-subunit KCNMB1 was co-expressed. In a small number of co-transfected cells marked time dependence to the activation kinetics was observed. Interaction studies using the mammalian two-hybrid technique demonstrated a physical association between CLCA1 and KCNMB1 when co-expressed in human embryonic kidney cells. These data suggest that activation of CLCA1 can be modified by accessory subunits.  相似文献   

19.
Ion flow in many voltage-gated K(+) channels (VGK), including the (human ether-a-go-go-related gene) hERG channel, is regulated by reversible collapse of the selectivity filter. hERG channels, however, exhibit low sequence homology to other VGKs, particularly in the outer pore helix (S5) domain, and we hypothesize that this contributes to the unique activation and inactivation kinetics in hERG K(+) channels that are so important for cardiac electrical activity. The S5 domain in hERG identified by NMR spectroscopy closely corresponded to the segment predicted by bioinformatics analysis of 676 members of the VGK superfamily. Mutations to approximately every third residue, from Phe(551) to Trp(563), affected steady state activation, whereas mutations to approximately every third residue on an adjacent face and spanning the entire S5 segment perturbed inactivation, suggesting that the whole span of S5 experiences a rearrangement associated with inactivation. We refined a homology model of the hERG pore domain using constraints from the mutagenesis data with residues affecting inactivation pointing in toward S6. In this model the three residues with maximum impact on activation (W563A, F559A, and F551A) face out toward the voltage sensor. In addition, the residues that when mutated to alanine, or from alanine to valine, that did not express (Ala(561), His(562), Ala(565), Trp(568), and Ile(571)), all point toward the pore helix and contribute to close hydrophobic packing in this region of the channel.  相似文献   

20.
In order to elucidate the possible roles of the glutamate system in the mechanisms underlying behavioral sensitization, which is used as an animal model for human psychosis, we investigated the effects of 3-((+/-)-2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) and MK-801 ((+)-dizocilpine), a competitive and noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, respectively, on methamphetamine-induced behavioral sensitization in rats. Administration of 0.5 mg/kg MK-801 enhanced 2 mg/kg methamphetamine-induced hyperactivity, whereas it reduced 6 mg/kg methamphetamine-induced stereotyped behavior markedly. CPP (10 mg/kg) reduced 2 mg/kg methamphetamine-induced stereotypy slightly. Repeated treatment with 2 and 6 mg/kg methamphetamine alone induced progressive augmentation of stereotypy, whereas combining either MK-801 or CPP with methamphetamine treatment abolished or attenuated this augmentation. However, when rats were challenged with methamphetamine after a 7-day period of abstinence, the intensity of stereotypy among the rats pretreated with repeated doses of methamphetamine alone or in combination with MK-801 or CPP did not differ significantly. These results indicate that competitive and non-competitive NMDA receptor antagonists modulate acute methamphetamine-induced abnormal behavior and sensitization expression, but they failed to prevent the induction of the neural mechanisms underlying behavioral sensitization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号