首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
An Rpn9-disrupted yeast strain, Delta rpn9, whose growth is temperature sensitive with defective assembly of the 26 S proteasome complex, was studied. This mutant yeast was more resistant to hydrogen peroxide treatment and able to degrade carbonylated proteins more efficiently than wild type. Nondenaturing gel electrophoresis followed by activity staining revealed that Delta rpn9 yeast cells had a higher activity of 20 S proteasome than wild type and that in both Delta rpn9 and wild-type cells treated with hydrogen peroxide, 20 S proteasome activity was increased with a concomitant decrease in 26 S proteasome activity. Protein multiubiquitination was not observed in the hydrogen peroxide-treated cells. Taken together, these results suggest that the 20 S proteasome degrades oxidized proteins without ubiquitination of target proteins.  相似文献   

3.
The 26S proteasome is known to play pivotal roles in cell-cycle progression in various eukaryotic cells; however, little is known about its role in higher plants. Here we report that the subcellular distribution of the 26S proteasome is dynamically changed in a cell-cycle dependent manner in tobacco BY-2 cells as determined by immunostaining with anti-Rpn10 (a regulatory PA700 subunit) and anti-20S catalytic proteasome antibodies. The 26S proteasome was found to localize not only in nuclear envelopes and mitotic spindles but also in preprophase bands (PPBs) and phragmoplasts appearing in G(2) and M phases, respectively. MG132, a proteasome inhibitor, exclusively caused cell-cycle arrest not only at the metaphase but also the early stage of PPB formation at the G(2) phase and the collapse of the phragmoplast, which seems to be closely related to proteasome distribution in the cells.  相似文献   

4.
The 20S proteasome and the 26S proteasome are major components of the cytosolic and nuclear proteasomal proteolytic systems. Since proteins are known to be highly susceptible targets for reactive oxygen species, the effect of H(2)O(2) treatment of K562 human hematopoietic cells toward the activities of 20S and 26S proteasomes was investigated. While the ATP-independent degradation of the fluorogenic peptide suc-LLVY-MCA was not affected by H(2)O(2) concentrations of up to 5 mM, the ATP-stimulated degradation of suc-LLVY-MCA by the 26S proteasome began to decline at 400 microM and was completely abolished at 1 mM oxidant treatment. A combination of nondenaturing electrophoresis and Western blotting let us believe that the high oxidant susceptibility of the 26S proteasome is due to oxidation of essential amino acids in the proteasome activator PA 700 which mediates the ATP-dependent proteolysis of the 26S-proteasome. The activity of the 26S-proteasome could be recovered within 24 h after exposure of cells to 1 mM H(2)O(2) but not after 2 mM H(2)O(2). In view of the specific functions of the 26S proteasome in cell cycle control and other important physiological functions, the consequences of the higher susceptibility of this protease toward oxidative stress needs to be considered.  相似文献   

5.
We have investigated three aspects of nucleotide usage by the 26S proteasome and its regulatory complex (RC). Both particles hydrolyze the four major ribonucleotides, but ATP and CTP have substantially lower K _s for hydrolysis than do GTP and UTP. The K _ for ATP hydrolysis is 15 m for the 26S proteasome and 30 m for the regulatory complex. Formation of the 26S proteasome from the RC and the 20S proteasome requires about 5 m ATP. Although measurable degradation of Ubiquitin(Ub)-lysozyme conjugates occurs in the presence of CTP, GTP, and UTP, the best nucleotide for Ub-conjugate degradation by the 26S proteasome is ATP, with an estimated K _ of 12 m. In summary, our studies show that micromolar concentrations of ATP are sufficient for several 26S proteasome activities.  相似文献   

6.
It is well established that nitric oxide (NO) inhibits vascular smooth muscle cell (VSMC) proliferation by modulating cell cycle proteins. The 26S proteasome is integral to protein degradation and tightly regulates cell cycle proteins. Therefore, we hypothesized that NO directly inhibits the activity of the 26S proteasome. The three enzymatic activities (chymotrypsin-like, trypsin-like and caspase-like) of the 26S proteasome were examined in VSMC. At baseline, caspase-like activity was approximately 3.5-fold greater than chymotrypsin- and trypsin-like activities. The NO donor S-nitroso-N-acetylpenicillamine (SNAP) significantly inhibited all three catalytically active sites in a time- and concentration-dependent manner (P < 0.05). Caspase-like activity was inhibited to a greater degree (77.2% P < 0.05). cGMP and cAMP analogs and inhibitors had no statistically significant effect on basal or NO-mediated inhibition of proteasome activity. Dithiothreitol, a reducing agent, prevented and reversed the NO-mediated inhibition of the 26S proteasome. Nitroso-cysteine analysis following S-nitrosoglutathione exposure revealed that the 20S catalytic core of the 26S proteasome contains 10 cysteines which were S-nitrosylated by NO. Evaluation of 26S proteasome subunit protein expression revealed differential regulation of the α and β subunits in VSMC following exposure to NO. Finally, immunohistochemical analysis of subunit expression revealed distinct intracellular localization of the 26S proteasomal subunits at baseline and confirmed upregulation of distinct subunits following NO exposure. In conclusion, NO reversibly inhibits the catalytic activity of the 26S proteasome through S-nitrosylation and differentially regulates proteasomal subunit expression. This may be one mechanism by which NO exerts its effects on the cell cycle and inhibits cellular proliferation in the vasculature.  相似文献   

7.
The ubiquitin/proteasome pathway is the main mechanism available for eukaryotic cells to eliminate defective proteins and enzymes. Tumor cells -particularly those in solid tumors such as prostate cancer- seem to display increased proteasomal activity associated to cell growth. When such activity is inhibited apoptotic cell death takes place. Thus, the understanding of the chemical mechanisms by which this inhibition occurs is relevant to the development of new therapeutic antineoplastic agents. Here a short review is presented on the synthesis, characterization, and activity of metal-containing species with asymmetric ligands containing the methylpyridin-amino-methylphenol moiety. These complexes were scrupulously investigated structurally and spectroscopically, and have been shown to inhibit the chymotrypsin-like activity of the 20S and 26S proteasome in vitro and in vivo. Recent developments in the understanding of such inhibition are discussed and point out to the influence exerted by ligand substituents, the electronic configurations and charges of the metal ion, and the role of counterions.  相似文献   

8.
The 26 S proteasome comprises two multisubunit subcomplexes as follows: 20 S proteasome and PA700/19 S regulatory particle. The cellular mechanisms by which these subcomplexes assemble into 26 S proteasome and the molecular determinants that govern the assembly process are poorly defined. Here, we demonstrate the nonequivalent roles of the C termini of six AAA subunits (Rpt1-Rpt6) of PA700 in 26 S proteasome assembly in mammalian cells. The C-terminal HbYX motif (where Hb is a hydrophobic residue, Y is tyrosine, and X is any amino acid) of each of two subunits, Rpt3 and Rpt5, but not that of a third subunit Rpt2, was essential for assembly of 26 S proteasome. The C termini of none of the three non-HbYX motif Rpt subunits were essential for cellular 26 S proteasome assembly, although deletion of the last three residues of Rpt6 destabilized the 20 S-PA700 interaction. Rpt subunits defective for assembly into 26 S proteasome due to C-terminal truncations were incorporated into intact PA700. Moreover, intact PA700 accumulated as an isolated subcomplex when cellular 20 S proteasome content was reduced by RNAi. These results indicate that 20 S proteasome is not an obligatory template for assembly of PA700. Collectively, these results identify specific structural elements of two Rpt subunits required for 26 S proteasome assembly, demonstrate that PA700 can be assembled independently of the 20 S proteasome, and suggest that intact PA700 is a direct intermediate in the cellular pathway of 26 S proteasome assembly.  相似文献   

9.
Viral gene expression patterns in human herpesvirus 6B-infected T cells   总被引:4,自引:0,他引:4  
Herpesvirus gene expression is divided into immediate-early (IE) or alpha genes, early (E) or beta genes, and late (L) or gamma genes on the basis of temporal expression and dependency on other gene products. By using real-time PCR, we have investigated the expression of 35 human herpesvirus 6B (HHV-6B) genes in T cells infected by strain PL-1. Kinetic analysis and dependency on de novo protein synthesis and viral DNA polymerase activity suggest that the HHV-6B genes segregate into six separate kinetic groups. The genes expressed early (groups I and II) and late (groups V and VI) corresponded well with IE and L genes, whereas the intermediate groups III and IV contained E and L genes. Although HHV-6B has characteristics similar to those of other roseoloviruses in its overall gene regulation, we detected three B-variant-specific IE genes. Moreover, genes that were independent of de novo protein synthesis clustered in an area of the viral genome that has the lowest identity to the HHV-6A variant. The organization of IE genes in an area of the genome that differs from that of HHV-6A underscores the distinct differences between HHV-6B and HHV-6A and may provide a basis for further molecular and immunological analyses to elucidate their different biological behaviors.  相似文献   

10.
Intracellular protein inclusions in Alzheimer's disease and progressive supranuclear palsy contain UBB+1, a variant ubiquitin. UBB+1 is able block the 26S proteasome in cell lines. Proteasome inhibition by drug action has previously been shown to induce a heat-shock response and render protection against stress. We investigated UBB+1 by developing a stable, conditional expression model in SH-SY5Y human neuroblastoma cells. Induction of UBB+1 expression caused proteasome inhibition as was confirmed by reduced ability to process misfolded canavanyl proteins, accumulation of GFPu, a proteasome substrate, and reduced cleavage of a fluorogenic substrate. We show that expression of UBB+1 induces expression of heat-shock proteins. This priming of the chaperone system in these cells promotes a subsequent resistance to tert-butyl hydroperoxide-mediated oxidative stress. We conclude that although UBB+1-expressing cells have a compromised ubiquitin-proteasome system, they are protected against oxidative stress conditions.  相似文献   

11.
Hsp90 has a diverse array of cellular roles including protein folding, stress response and signal transduction. Herein we report a novel function for Hsp90 in the ATP-dependent assembly of the 26S proteasome. Functional loss of Hsp90 using a temperature-sensitive mutant in yeast caused dissociation of the 26S proteasome. Conversely, these dissociated constituents reassembled in Hsp90-dependent fashion both in vivo and in vitro; the process required ATP-hydrolysis and was suppressed by the Hsp90 inhibitor geldanamycin. We also found genetic interactions between Hsp90 and several proteasomal Rpn (Regulatory particle non-ATPase subunit) genes, emphasizing the importance of Hsp90 to the integrity of the 26S proteasome. Our results indicate that Hsp90 interacts with the 26S proteasome and plays a principal role in the assembly and maintenance of the 26S proteasome.  相似文献   

12.
Pan J  Zhang Q  Wang Y  You M 《PloS one》2010,5(10):e13298
Cancer stem cells (CSCs) are a small subset of cancer cells capable of self-renewal and tumor maintenance. Eradicating cancer stem cells, the root of tumor origin and recurrence, has emerged as one promising approach to improve lung cancer survival. Cancer stem cells are reported to reside in the side population (SP) of cultured lung cancer cells. We report here the coexistence of a distinct population of non-SP (NSP) cells that have equivalent self-renewal capacity compared to SP cells in a lung tumor sphere assay. Compared with the corresponding cells in monolayer cultures, lung tumor spheres, formed from human non-small cell lung carcinoma cell lines A549 or H1299, showed marked morphologic differences and increased expression of the stem cell markers CD133 and OCT3/4. Lung tumor spheres also exhibited increased tumorigenic potential as only 10,000 lung tumor sphere cells were required to produce xenografts tumors in nude mice, whereas the same number of monolayer cells failed to induce tumors. We also demonstrate that lung tumor spheres showed decreased 26S proteasome activity compared to monolayer. By using the ZsGreen-cODC (C-terminal sequence that directs degradation of Ornithine Decarboxylase) reporter assay in NSCLC cell lines, only less than 1% monolayer cultures were ZsGreen positive indicating low 26S proteasome, whereas lung tumor sphere showed increased numbers of ZsGreen-positive cells, suggesting the enrichment of CSCs in sphere cultures.  相似文献   

13.
Jin H  Li S  Villegas A 《Plant physiology》2006,142(2):651-661
Plant viruses utilize the vascular system for systemic movement. The plant vascular network also transports water, photosynthates, and signaling molecules and is essential for plant growth. However, the molecular mechanisms governing vascular development and patterning are still largely unknown. From viral transport suppressor screening using virus-induced gene silencing, we identified a 26S proteasome subunit, RPN9, which is required for broad-spectrum viral systemic transport. Silencing of RPN9 in Nicotiana benthamiana inhibits systemic spread of two taxonomically distinct viruses, Tobacco mosaic virus and Turnip mosaic virus. The 26S proteasome is a highly conserved eukaryotic protease complex controlling many fundamental biochemical processes, but the functions of many 26S proteasome regulatory subunits, especially in plants, are still poorly understood. We demonstrate that the inhibition of viral systemic transport after RPN9 silencing is largely due to alterations in the vascular tissue. RPN9-silenced plants display extra leaf vein formation with increased xylem and decreased phloem. We further illustrate that RPN9 functions at least in part through regulation of auxin transport and brassinosteroid signaling, two processes that are crucial for vascular formation. We propose that RPN9 regulates vascular formation by targeting a subset of regulatory proteins for degradation. The brassinosteroid-signaling protein BZR1 is one of the targets.  相似文献   

14.
Imaging 26S proteasome activity and inhibition in living mice   总被引:7,自引:0,他引:7  
The ubiquitin-proteasome pathway is the central mediator of regulated proteolysis in cells, and defects in this pathway are associated with cancer and neurodegenerative diseases. To assess 26S proteasome function in living animals, we developed a ubiquitin-luciferase reporter for bioluminescence imaging. The reporter was degraded rapidly under steady-state conditions and stabilized in a dose- and time-dependent manner in response to proteasome inhibitors. Using bioluminescence imaging after one dose of the chemo-therapeutic proteasome inhibitor bortezomib (PS-341), proteasome function in tumor xenografts was blocked within 30 min and returned to nearly baseline by 46 h. After a 2-week regimen of bortezomib, however, imaging of target tumors showed significantly enhanced proteasome inhibition that no longer returned to baseline. The ubiquitin-luciferase reporter enables repetitive tissue-specific analysis of 26S proteasome activity in vivo and should facilitate development and validation of proteasome inhibitors in mouse models, as well as investigations of the ubiquitin-proteasome pathway in disease pathogenesis.  相似文献   

15.
The regulatory particle (RP) of the 26S proteasome contains a heterohexameric ring of AAA-ATPases (RPT1-6) that unfolds and inserts substrates into the core protease (CP) for degradation. Through genetic analysis of the Arabidopsis thaliana gene pair encoding RPT2, we show that this subunit plays a critical role in 26S proteasome assembly, histone dynamics, and plant development. rpt2a rpt2b double null mutants are blocked in both male and female gamete transmission, demonstrating that the subunit is essential. Whereas rpt2b mutants are phenotypically normal, rpt2a mutants display a range of defects, including impaired leaf, root, trichome, and pollen development, delayed flowering, stem fasciation, hypersensitivity to mitomycin C and amino acid analogs, hyposensitivity to the proteasome inhibitor MG132, and decreased 26S complex stability. The rpt2a phenotype can be rescued by both RPT2a and RPT2b, indicative of functional redundancy, but not by RPT2a mutants altered in ATP binding/hydrolysis or missing the C-terminal hydrophobic sequence that docks the RPT ring onto the CP. Many rpt2a phenotypes are shared with mutants lacking the chromatin assembly factor complex CAF1. Like caf1 mutants, plants missing RPT2a or reduced in other RP subunits contain less histones, thus implicating RPT2 specifically, and the 26S proteasome generally, in plant nucleosome assembly.  相似文献   

16.
17.
We report the functional characterization of RPN6, an essential gene from Saccharomyces cerevisiae encoding the proteasomal subunit Rpn6p. For this purpose, conditional mutants that are able to grow on galactose but not on glucose were obtained. When these mutants are shifted to glucose, Rpn6p depletion induces several specific phenotypes. First, multiubiquitinated proteins accumulate, indicating a defect in proteasome-mediated proteolysis. Second, mutant yeasts are arrested as large budded cells with a single nucleus and a 2C DNA content; in addition, the spindle pole body is duplicated, indicating a general cell cycle defect related to the turnover of G(2)-cyclins after DNA synthesis. Clb2p and Pds1p, but not Sic1p, accumulate in the arrested cells. Depletion of Rpn6p affects both the structure and the peptidase activity of proteasomes in the cell. These results implicate Rpn6p function in the specific recognition of a subset of substrates and point to a role in maintaining the correct quaternary structure of the 26 S proteasome.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号