首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a vineyard having three varieties of grape (Merlot, Trebbiano and Garganega) differently colonized by two phytoseiid species,Typhlodromus pyri Scheuten andAmblyseius andersoni (Chant), the dynamics of mite populations were monitored over 5 years (1989–1993) in order to study their colonization, interspecific competition and the control of spider mites, i.e.Panonychus ulmi (Koch). These aspects were also investigated by releasingT. pyri, A. andersoni andAmblyseius aberrans (Oudemans) on some of the above varieties. In most of the experimental years (1989–1992), selective pesticides were used in order to allow a successful release of phytoseiids, in particularA. aberrans. The use of non-selective insecticides was re-established during 1993 in order to test its effect on the new mite communities originating from 1989 onwards. In the first years of the experiments an apparent relationship between grape variety and phytoseiid species was observed: in the control plots,A. andersoni occurred on Merlot whereT. pyri was rare, while the latter species was largely dominant overA. andersoni on Trebbiano and Garganega.Panonychus ulmi populations reached moderate levels only on Merlot and in the first part of experiments. The variety-phytoseiid species relationship was temporary as, at the end of experiments,T. pyri was completely dominant on all varieties. This new situation started when prey occurrence and interspecific competition decreased in importance. The moderate success of theT. pyri release on Merlot contrasts with the results of previous experiments. Two factors could be involved in this phenomenon: low interspecific competition by phytoseiids and predation by macropredators.Amblyseius aberrans was able to displaceA. andersoni andT. pyri on grape varieties where the two species were more abundant and reached higher population densities on varieties with pubescent leaf undersurfaces. In the first experimental year, spider mite densities were reduced more effectively inA. aberrans release plots than in the control or inT. pyri release plots. One year later,P. ulmi reached lower levels in the release treatments than in the control.Typhlodromus pyri andA. aberrans persisted in conditions of prey scarcity. The high competitivity ofA. aberrans over the remaining two phytoseiid species constitutes a major factor in selecting predatory species for inoculative releases in vineyards.  相似文献   

2.
Predator–predator, predator–prey, and prey–prey associations among nine species of mites were studied in a plot of 100 Red Delicious apple (Malus pumila Miller) trees from 1990 to 1997. In 1990, seven-year-old trees were inoculated with Panonychus ulmi (Koch), Tetranychus urticae Koch (Acari: Tetranychidae) or both, and sprayed with azinphosmethyl (alone or plus endosulfan), or nothing. The species Zetzellia mali (Ewing) (Acari: Stigmaeidae), Amblyseius andersoni Chant (Acari: Phytoseiidae), Eotetranychus sp., Bryobia rubrioculus (Scheuten) (Acari: Tetranychidae), and Aculus schlechtendali Nalepa (Acari: Eriophyidae) were already present or immigrated into plots, and Galendromus occidentalis (Nesbitt) and Typhlodromus pyri Scheuten (Acari: Phytoseiidae) were introduced. Yule's V association index was used to measure positive, neutral, or negative interspecific associations for each species pair, because of its robustness with spatially autocorrelated data. We found that pesticide and release treatments did not greatly affect the association results, but there were strong seasonal differences. Predator–predator associations were the strongest and most consistent, showing negative associations in the early and mid seasons, and neutral ones in late season. Negative associations of T. pyri with other predators were the strongest, which is consistent with evidence that this mite can detect other predators on a leaf. Predator–prey seasonal associations were mixed, with some positive and others negative, with most significant associations occurring in the mid season. One prey–prey interaction was positive, again in mid season, most likely because of similar habitat preferences.  相似文献   

3.
The response of the predatory mite Amblyseius longispinosus (Acari: Phytoseiidae) to the webnest of the spider mite nanjingensis (Acari: Tetranychidae) was examined using two-choice tests in the laboratory. A. longispinosus females were found significantly more often on leaves with webnests than on leaves without webnests and were often observed searching under the webbing. Because spider mites and their eggs were removed from the webnests before experiments, predators responded to stimuli associated with webbing, mite feeding damage and other residues in the webnests.  相似文献   

4.
Many phytophagous mites can attack strawberry plants, Fragaria x ananassa, among them the southern red mite, Oligonychus ilicis McGregor, and the two-spotted spider mite, Tetranychus urticae Koch. They are found together feeding on the same plant on the upper and underside of the leaves, respectively. Here we studied the choice for feeding sites of O. ilicis and T. urticae on strawberry plants. The first hypothesis tested whether the feeding site choice would be related to the fitness of the species. The second hypothesis dealt whether the feeding site would be determined by the presence of a heterospecific mite. We evaluated the preference, biology and reproductive success of O. ilicis and T. urticae on the under and upper side surface of strawberry leaves infested or not by the heterospecific. O. ilicis preferred to stay on the upper side surface while T. urticae preferred the underside. The preference for the leaf surface correlated with the reproductive success of the species (measured by the intrinsic growth rate). The choice pattern of feeding sites did not alter when the choice test was applied using sites previously infested by heterospecific. Although O. ilicis and T. urticae, apparently, do not interact directly for feeding sites, there is a chance that the first species induces defenses in strawberry plant enabling to reduce the fitness of the second species. The possibility of those species stay together on strawberry plant increases the damage capacity to the culture.  相似文献   

5.
Communities of phytophagous and predatory mites on vine can be influenced by the type of chemical treatment. Ten species of phytoseiid mites inhabit vines in the region of South Moravia. Populations ofTyphlodromus pyri Scheuten play leading roles in effective suppression of tetranychid and eriophyid mites in commercial vineyards sprayed with pesticides, except synthetic pyrethroids and mancozed, which are considered to be detrimental to the predatory phytoseiid mites.  相似文献   

6.
The migratory behaviour of two tetranychid pest species, Aponychus corpuzae and Schizotetranychus nanjingensis, and one phytoseiid, Typhlodromus bambusae, was studied in several monocultural bamboo forests in Fujian Province, China. The aim of the study was to assess how the ambulatory immigration of tetranychid and phytoseiid mites from the ground to new leaves is affected by a sticky barrier around the stem, by the age of bamboo shoots or by shoot density. The results show that while the sticky barrier is particularly effective at disrupting the ambulatory immigration from the ground to new leaves of S. nanjinigensis to 1-year-old shoots and of A. corpuzae to 3-year-old shoots, it has no significant effect on the immigration of the phytoseiid mite.  相似文献   

7.
An efficient, low cost and practicable mass rearing method for the predatory mite, Neoseiulus baraki Athias-Henriot (Acari: Phytoseiidae) was developed using a bag made of two-ply polypropylene (gauge 150, 24 cm × 36 cm) sheets. Introducing 20 N. baraki females into the bag produced a mean number 5218 ± 212.10 offspring in 6 weeks with a 260-fold increase of the initial population.  相似文献   

8.
Several species of phytoseiid mites (Acari: Phytoseiidae), including species of the genera Amblyseius, Galendromus, Metaseiulus, Neoseiulus, Phytoseiulus and Typhlodromus, are currently reared for biological control of various crop pests and/or as model organisms for the study of predator-prey interactions. Pathogen-free phytoseiid mites are important to obtain high efficacy in biological pest control and to get reliable data in mite research, as pathogens may affect the performance of their host or alter their reproduction and behaviour. Potential and verified pathogens have been reported for phytoseiid mites during the past 25 years. The present review provides an overview, including potential pathogens with unknown host effects (17 reports), endosymbiotic Wolbachia (seven reports), other bacteria (including Cardinium and Spiroplasma) (four reports), cases of unidentified diseases (three reports) and cases of verified pathogens (six reports). From the latter group four reports refer to Microsporidia, one to a fungus and one to a bacterium. Only five entities have been studied in detail, including Wolbachia infecting seven predatory mite species, other endosymbiotic bacteria infecting Metaseiulus (Galendromus, Typhlodromus) occidentalis (Nesbitt), the bacterium Acaricomes phytoseiuli infecting Phytoseiulus persimilis Athias-Henriot, the microsporidium Microsporidium phytoseiuli infecting P. persimilis and the microsporidium Oligosproridium occidentalis infecting M. occidentalis. In four cases (Wolbachia, A. phytoseiuli, M. phytoseiuli and O. occidentalis) an infection may be connected with fitness costs of the host. Moreover, infection is not always readily visible as no obvious gross symptoms are present. Monitoring of these entities on a routine and continuous basis should therefore get more attention, especially in commercial mass-production. Special attention should be paid to field-collected mites before introduction into the laboratory or mass rearing, and to mites that are exchanged among rearing facilities. However, at present general pathogen monitoring is not yet practical as effects of many entities are unknown. More research effort is needed concerning verified and potential pathogens of commercially reared arthropods and those used as model organisms in research.  相似文献   

9.
A laboratory trial evaluated four phytoseiid species for their potential as biological control agents of spruce spider mite, Oligonychus ununguis (Jacobi) (Acari: Tetranychidae). An augmentative biological control approach, using the predatory mites Neoseiulus fallacis Garman and Galendromus occidentalis Nesbitt (Acari: Phytoseiidae), was evaluated for reducing pest mite densities and injury, and economic costs on Juniperus chinensis 'Sargentii' A. Henry (Cupressaceae) in an outdoor nursery. Sequential releases of predator species, individually and in combination, were tested and compared with two commonly used miticides, a low-toxicity miticide, horticultural oil, and a conventional miticide, hexythiazox. Timing of treatments was based on grower-determined need, and predator release rates were based on guidelines in literature received from producers of beneficial organisms. Predator releases were more expensive and provided less effective suppression of spruce spider mites, resulting in greater spider mite injury to plants, compared with conventional pesticides. However, spider mite damage to plants did not differ in an economically meaningful way between treatments. Unsatisfactory levels of control seem related to under estimations of actual spider mite abundance based on grower perceptions and the beat sampling technique used to estimate predator release rates. These data suggest that when initial populations of spruce spider mite are high, it is unlikely that sequential releases of predator species, individually or in combination, will suppress spider mite populations. In this trial, augmentative biological control control was 2.5-7 times more expensive than chemical controls.  相似文献   

10.
Subterranean predatory mites are important biological control agents of pests in soil. In order to understand the population characteristics of two predatory mites, Macrocheles glaber Miiller and Stratiolaelaps scimitus Womersley, we studied their development, survival and fecundity data under laboratory conditions using Coboldia fuscipes Meigen as a food source and analyzed them with the age-stage, two-sex life table. Macrocheles glaber had a significantly shorter developmental time, oviposition period, longevity and lower fecundity than those of S. scimitus. The intrinsic rate of increase (λ), finite rate of increase (r), net reproductive rate (C0),net predation rate (C0), and finite predation rate (ω) of M. glaber were significantly lower than those of S. scimitus. Both population parameters and computer simulation implied that S. scimitus is a potential powerful biocontrol agent compared to M. glaber.  相似文献   

11.
12.
13.
D. S. Yao  D. A. Chant 《Oecologia》1989,80(4):443-455
Summary Populations of two species of phytoseiid mite predators, Phytoseiulus persimilis Athias-Henriot and Amblyseius degenerans (Berlese), feeding on a tetranychid prey, Tetranychus pacificus McGregor, were allowed to grow separately as well as together on bush lima bean (Phaseolus lunatus Var.) arenas in the laboratory. The population plateau attained by P. persimilis was nearly 5 times higher than that for A. degenerans when each species was on separate leaf arenas. When they were on the same arena, P. persimilis was outcompeted by A. degenerans after about 70 days of population growth. When dispersal to other arenas was necessary for the predators to find prey in another experiment, P. persimilis survived well but not A. degenerans. The mechanisms underlying species displacement were explored further. The differential mortality of immature predators at different developmental stages due to interspecific predation was concluded to be responsible for the population decline of P. persimilis, and the decline of A. degenerans in another experiment was attributed to its sedentary tendency regardless of prey distribution and to the lack of alternative food sources in the system. The implications to biological control of mutual predation between predator species is discussed briefly.  相似文献   

14.
Abstract

Studies on the life history and life table parameters of Neoseiulus cucumeris Oudemans (Acari: Phytoseiidae) were carried out under laboratory conditions of 25?±?1?°C and 65?±?5% RH; 30?±?1?°C and 60?±?5% RH; 35?±?1?°C and 55?±?5% RH. As prey, immature stages of tetranychid spider mite T. urticae Koch (Acari: Tetranychidae) and the moving stages of the Tomato Russet Mite A. lycopersici (Massee) (Acari: Eriophyideae) were selected. The predatory phytoseiid mite, Neoseiulus cucumeris (Oudemans) was able to develop successfully from egg to adult stage through the entire life history on both preys. The higher of different temperatures and relative humidities shortened the development and increased reproduction and prey consumption and vice versa. The maximum reproduction (3.91, and 3.09 eggs/♀/day) was recorded at 35?°C and 65% RH, while the minimum (2.12, and 1.90 eggs/♀/day) was at 25?±?1?°C and 55?±?5% RH. when N. cucumeris fed on A. lycopersici and T. urticae, respectively. The reproductive rate on eriophyid was significantly higher than previously recorded on tetranychid. Life table parameters indicated that feeding of phytoseiid mite N. cucumeris on tomato russet mite A. lycopersici led to the highest reproduction rate (rm?=?0.268, 0.232 and 0.211 females/female/day), while feeding on T.urticae gave the lowest reproduction rate (rm?=?0.159, 0.143 and 0.131) at 35?°C and 55% RH, 30?°C and 60% RH and 25?°C and 65% RH, respectively. The population of N. cucumeris multiplied (36.81, 28.71 and 20.47) and (24.60, 19.58 and 14.62 times) in a generation time of (20.10, 23.20 and 25.14) and (22.35, 25.36 and 27.79 days) when a predator fed on A. lycopersici and T. urticae at the same temperature above mentioned, respectively. These results suggest that the two mites, particularly A. lycopersici, proved to be suitable prey for N.cucumeris, as a facultative predator.  相似文献   

15.
The compatibility of Orius laevigatus Fieber with Neoseiulus (Amblyseius) cucumeris Oudemans as predators of Frankliniella occidentalis Pergande was assessed in 24 h tests on French bean leaf discs. At varying densities of N. cucumeris and F. occidentalis in the presence of a single female O. laevigatus, it was found that O. laevigatus fed on both other organisms to a similar extent, thus raising questions as to the suitability of this combination of predators in the biocontrol of F. occidentalis. In similar trials assessing the compatibility of O. laevigatus with Iphiseius (Amblyseius) degenerans Berlese, O. laevigatus preyed on F. occidentalis to a greater extent than on I. degenerans. It is hypothesized that O. laevigatus and I. degenerans could be used simultaneously in the biocontrol of F. occidentalis with minimal interference between them.  相似文献   

16.
The predacious mites, Typhlodromus mangiferus Zaher and El-Borolossy and Typhlodromips swirskii (Athias-Henriot), reproduced successfully on mango powdery mildew Oidium mangiferae Berthet in absence or presence of spider mite prey Oligonichus mangiferus (Rahman and Sapra) under laboratory conditions of 25 ± 1°C and 60–65% R.H. Adult female of both predators consumed protonymphs of O. mangiferus at different experimental densities. The consumption rate increased with increasing prey densities up to 25 protonymphs/female/day and decreased significantly at 35 and 50 protonymphs/female/day for the two predatory mites. Addition of powdery mildew conidia to each prey density significantly reduced consumption of spider mites at 35 and 50 protonymphs/female/day. Mean eggs/female/day by T. swirskii and T. mangiferus was 0.30 and 0.72 when reared on powdery mildew conidia compared with 1.64 and 1.57 when fed on powdery mildew and tetranychid prey, respectively. This increase in reproduction would have compensated the reduction in protonymph prey consumption due to the presence of mildew conidia. Mite–mildew interactions are discussed.  相似文献   

17.
In spring a population of the citrus red mite (Panonychus citri),a non-diapausing species, migrated to a Japanese pear orchard, mainly from nearby Japanese holly trees, but in autumn most of the mites starved to death while the rest returned to the holly trees. In the Japanese holly trees, the population of mites reached their maximum density in late May1993 and in mid-June 1994 on overwintered leaves and moved to newly opened leaves in mid-June 1993 and late June 1994. The mites tended to disperse abruptly in early June or mid-June and again towards the end of June. The mites inhabiting the holly trees appeared to migrate to the Japanese pear trees in June but their densities on pear leaves remained low until mid-August. In the pear orchard, the mites initially tended to increase on pear leaves near the holly trees and then gradually spread to other leaves farther away from the holly trees. Their highest density in the pear orchard occurred in mid-October. When pear leaves were inoculated with two or five female adults at different times from May to September, the leaves inoculated before mid-August showed no increase in the number of mites. A possible cause for the suppression of the population increase on pear leaves from June to mid-August is discussed. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

18.
在实验条件下,系统研究了芬兰真绥螨Euseius finlandicus Oudemans对苹果全爪螨Panony-chus ulmi Koch的控制能力。研究结果表明:(1)在15~32℃的温度条件下,芬兰真绥螨雌成螨的捕食量随着温度的上升呈线型正相关。在15~25℃的温度内芬兰真绥螨的产卵量随温度升高而增加,在15℃下平均单雌产卵0.42粒,25℃时平均单雌产卵2.56粒;当温度升到32℃时单雌产卵下降为1.62粒,雌成螨的产卵量与温度的关系呈抛物线型。(2)在5~15头/叶的猎物密度下,雌成螨的捕食量随着猎物的密度增加呈线型正相关,而当猎物密度达到30头/叶时,芬兰真绥螨雌成螨的捕食量处于平稳状态。在5~15头/叶的猎物密度下,芬兰真绥螨的产卵量和产卵量均与猎物的密度呈线型正相关;当每头雌成螨捕食量为1.8~3.5头时,产卵量为1.0~1.5粒。(3)不同温度下,芬兰真绥螨对猎物的不同密度和虫态的功能反应可用圆盘方程II型进行拟合;在25℃条件下捕食效率最高且喜好捕食的虫态是卵和幼螨。  相似文献   

19.
Two new species of predatory mites, one each of Bdellodes Oudemans (Fam. Bdellidae) and Phytoseius Ribaga (Fam. Phytoseiidae) recorded for the first time from two medicinal plants viz. Ambroma augusta (L.) L.f. (Fam. Sterculiaceae) and Clerodendrum viscosum Vent (Fam. Verbenaceae), respectively, are described in this paper.  相似文献   

20.
The cultivation of tropical fruit trees has grown considerably in the state of Bahia, northeastern Brazil. Some of these have been severely attacked by phytophagous mites, which are usually controlled by the use of chemical pesticides. However, there is today a growing interest for the adoption of less aggressive measures of pest control, as for example the use of predatory mites. Most of the plant-inhabiting predatory mites belong to the family Phytoseiidae. The objective of this paper is to report the phytoseiid species found in an intensive survey conducted on cultivated tropical fruit trees in fifteen localities of the southern coast of Bahia. Measurements of relevant morphological characters are provided for each species, to complement the understanding of the morphological variation of these species. Twenty-nine species of sixteen genera were identified. A key was elaborated to assist in the separation of these species. Fifteen species are reported for the first time in the state, raising to sixty-six the number of species of this family now known from Bahia. Seventy-two percent of the species collected belong to Amblyseiinae, followed by Typhlodrominae (21%) and Phytoseiinae (7%). The most diverse genus was Amblyseius. Amblyseiusoperculatus De Leon was the most frequent and abundant species. Studies should be conducted to evaluate the possible role of the most common predators as control agents of the phytophagous mites co-occurring with them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号