首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The growth hormone receptor (GHR) is expressed as one active, full-sequence isoform and one truncated, inactive one that lacks the intracellular signaling domain. The aim of this study was to investigate the variation in the tissue expression of the full and truncated mRNA and protein. Epstein-Barr virus-transformed human B lymphocyte lines were established from 9 normal individuals with a height standard deviation score (SDS) of - 0.1 +/- 1.1 (mean +/- SD). Tissues were also collected from 3 Rhesus monkeys, whose GHR has 94.1 % homology with the human molecule. mRNA quantitation was determined by Real Time Quantitative PCR. Growth hormone receptor expression in transformed lymphocytes was also studied by fluorescence-activated cell sorter analysis. Both isoforms were expressed in transformed lymphocytes, but individual variation in the relative mRNA expression was small (truncated isoform percentage of total receptor mRNA: 17.1 +/- 4.4, mean +/- SD). There was no correlation between donors' height SDS and the expression of either isoform or the ratio between them. Protein expression by FACS analysis showed wider variation among the subjects; however, the relative ratio was similar in all the subjects. In monkey tissues, the truncated receptor showed a tissue-specific distribution. In conclusion, the expression of both isoforms in transformed lymphocytes from normal subjects shows small differences at the RNA or protein levels, and does not correlate with height SDS. Growth hormone splice isoforms show tissue specificity, suggesting local regulation of splicing. Tissues with relatively high expression of the truncated isoform are likely to be more resistant to the effects of GH due to the dominant negative effect of this isoform. In addition, the differential tissue expression might influence the levels of growth hormone binding protein in the immediate milieu of each tissue.  相似文献   

3.
4.
5.
6.
Yoshida H  Goedert M 《Biochemistry》2002,41(51):15203-15211
Tau is a major microtubule-associated protein in mammalian brain, where it exists as multiple isoforms that are produced from a single gene by alternative mRNA splicing. Here we present the first report on the structure and function of tau protein from a nonmammalian vertebrate. In the adult chicken brain, five main tau isoforms are expressed. One isoform has three tandem repeats, two isoforms have four repeats each, and two isoforms have five repeats each. Similar to mammalian tau, some chicken tau isoforms contain an amino-terminal insert of 53 amino acids. Unlike mammalian tau, a 34 amino acid insert in the proline-rich region upstream of the repeats is alternatively spliced in chicken tau. It is preceded by a constitutively expressed sequence of 17 amino acids that is absent in tau from human and rodent brains. The expression of chicken tau isoforms and their phosphorylation are developmentally regulated, similar to what has been described in mammalian brain. Functionally, chicken tau isoforms with five repeats have the greatest ability to promote microtubule assembly, followed by isoforms with four and three repeats, respectively. The 34 amino acid insert positively influences both the rate and the extent of microtubule assembly, whereas the 53 amino acid insert only influences the extent of assembly.  相似文献   

7.
Numb is a membrane-associated, phosphotyrosine binding (PTB) domain-containing protein that functions as an intrinsic determinant of cell fate during Drosophila development. We have identified four isoforms of mammalian Numb with predicted molecular masses of 65, 66, 71, and 72 kDa that are generated by alternative splicing of the Numb mRNA. The different isoforms result from the presence of two sequence inserts within the PTB domain and the central region of the protein. The endogenous expression pattern of these isoforms, examined using specific antisera, varied in different tissues and cell lines. In addition, differentiation of P19 cells with retinoic acid leads to the specific loss of expression of the 71- and 72-kDa Numb proteins, suggesting that the expression of certain forms of Numb protein is regulated in a cell type-specific manner. Expression of Numb proteins fused to green fluorescent protein revealed that the form of the PTB domain with the alternatively spliced insert constitutively associated with the plasma membrane in polarized Madin-Darby canine kidney cells. In contrast, the isoform without the insert was cytoplasmic, suggesting that different PTB domain isoforms may regulate the subcellular localization of Numb proteins. The membrane localization may be due, in part, to differential affinity for acidic phospholipids. The distinct expression and localization patterns of the different mammalian Numb isoforms suggest that they have distinct functional properties.  相似文献   

8.
In order to isolate candidate genes involved in bovine adipocyte differentiation, we have constructed a subtraction library from a clonal bovine intra-muscular pre-adipocyte (BIP) cell line using the suppression subtractive hybridization method. We have isolated a set of subtracted cDNA fragments whose respective mRNA levels are up-regulated during the adipogenic differentiation of BIP cells, and cloned cDNAs from a differentiated BIP-lambda ZAP II cDNA library. Two cDNA clones were highly homologous to the sequence of mouse and human type XII collagen alpha-1, determined by a BLAST homology search. As type XII collagen has been reported to have four types of splicing isoform, two clones were determined to be XII-1 and XII-2 splicing isoforms, respectively, because of a difference in the C-terminal NC1 domain. From the expression analysis of type XII collagen, the XIIA-2 isoform was mainly expressed in differentiated BIP cells and adipose tissues. Although the function of type XII collagen has not been established as yet, these results suggest that type XII collagen may be associated with adipocyte differentiation and adipose formation in cattle and is a potentially useful marker for adipogenesis.  相似文献   

9.
10.
Most human messenger RNAs (mRNAs) are alternatively spliced and many exhibit disease-specific splicing patterns. However, the contribution of most splicing events to the development and maintenance of human diseases remains unclear. As the contribution of alternative splicing events to diagnosis and prognosis is becoming increasingly recognized, it becomes important to develop precise methods to quantify the abundance of these isoforms in clinical samples. Here we present a pipeline for real-time PCR annotation of splicing events (RASE) that allows accurate identification of a large number of splicing isoforms in human tissues. The RASE automatically designed specific primer pairs for 81% of all alternative splicing events in the NCBI build 36 database. Experimentally, the majority of the RASE designed primers resulted in isoform-specific amplification suitable for quantification in human cell lines or in formalin-fixed, paraffin-embedded (FFPE) RNA extract. Using this pipeline it is now possible to rapidly identify splicing isoform signatures in different types of human tissues or to validate complete sets of data generated by microarray expression profiling and deep sequencing techniques.  相似文献   

11.
Allele-specific transcript isoforms in human   总被引:2,自引:0,他引:2  
  相似文献   

12.
13.
ORP3 is a member of the newly described family of oxysterol-binding protein (OSBP)-related proteins (ORPs). We previously demonstrated that this gene is highly expressed in CD34(+) hematopoietic progenitor cells, and deduced that the "full-length" ORP3 gene comprises 23 exons and encodes a predicted protein of 887 amino acids with a C-terminal OSBP domain and an N-terminal pleckstrin homology domain. To further characterize the gene, we cloned ORP3 cDNA from PCR products and identified multiple splice variants. A total of eight isoforms were demonstrated with alternative splicing of exons 9, 12, and 15. Isoforms with an extension to exon 15 truncate the OSBP domain of the predicted protein sequence. In human tissues there was specific isoform distribution, with most tissues expressing varied levels of isoforms with the complete OSBP domain; while only whole brain, kidney, spleen, thymus, and thyroid expressed high levels of the isoforms associated with the truncated OSBP domain. Interestingly, the expression in cerebellum, heart, and liver of most isoforms was negligible. These data suggest that differential mRNA splicing may have resulted in functionally distinct forms of the ORP3 gene.  相似文献   

14.
cDNA clones encoding four rat tropomyosin isoforms, termed TM-2, TM-3, TM-5a, and TM-5b, were isolated and characterized. All are derived from the alpha-tropomyosin gene via alternative RNA processing and the use of two alternate promoters. The cDNA sequences predict that TM-2 and TM-3 both contain 284 amino acids and differ from each other only at an internal region of the protein from amino acids 189 through 213, due to alternative splicing of exons 6a and 6b. TM-5a and TM-5b both contain 248 amino acids and differ from each other only at an internal exon encoding amino acids 153 through 177, also due to alternative splicing of exons 6a and 6b. The differences in the amino acid sequence encoded by these alternate exons affects the theoretical actin-binding pattern of the tropomyosins, such that TM-5b is expected to bind actin with greater affinity than TM-5a. TM-2 and TM-3 are transcribed from the upstream promoter, and TM-5a and TM-5b are transcribed from an internal promoter. In addition, all four isoforms contain the identical COOH-terminal coding region. RNA protection analyses revealed that the mRNA for each isoform is expressed in a number of different tissues and cell types, although the expression of some isoforms is restricted to particular cell types. Furthermore, the expression of mRNA encoding these isoforms was found to be altered in a number of different virally transformed cell lines. The changes in the expression of tropomyosin mRNAs in transformed cells reflect changes in the relative use of the two promoters, as well as the relative use of alternatively spliced exons 6a and 6b.  相似文献   

15.
Myo1b is a widely expressed myosin-I isoform that concentrates on endosomal and ruffling membranes and is thought to play roles in membrane trafficking and dynamics. Myo1b is alternatively spliced within the regulatory domain of the molecule, yielding isoforms with six (myo1b(a)), five (myo1b(b)), or four (myo1b(c)) non-identical IQ motifs. The calmodulin binding properties of the myo1b IQ motifs have not been investigated, and the mechanical and cell biological consequences of alternative splicing are not known. Therefore, we expressed the alternatively spliced myo1b isoforms truncated after the final IQ motif and included a sequence at their C termini that is a substrate for bacterial biotin ligase. Site-specific biotinylation allows us to specifically attach the myosin to motility surfaces via a biotin-streptavidin linkage. We measured the ATPase and motile properties of the recombinant myo1b splice isoforms, and we correlated these properties with calmodulin binding. We confirmed that calcium-dependent changes in the ATPase activity are due to calcium binding to the calmodulin closest to the motor. We found that calmodulin binds tightly to some of the IQ motifs (Kd < 0.2 microM) and very weakly to the others (Kd > 5 microM), suggesting that a subset of the IQ motifs are not calmodulin bound under physiological conditions. Finally, we found the in vitro motility rate to be dependent on the myo1b isoform and the calmodulin concentration and that the myo1b regulatory domain acts as a rigid lever arm upon calmodulin binding to the high affinity and low affinity IQ motifs.  相似文献   

16.
17.
We describe the isolation and sequence analysis of quail muscle cDNA clones encoding two closely related isoforms of the striated muscle contractile protein, troponin T. The cDNAs represent two troponin T mRNAs that exhibit an unusual sequence relationship. The two mRNAs have identical sequences over hundreds of nucleotides including 3' untranslated regions, but they differ dramatically in a discrete, internally located block of 38 nucleotides. The two alternative sequences of this 38-nucleotide block encode two different but related versions of amino acid residues 230-242, near the C terminus of the protein. These results are consistent with a novel mechanism of troponin T isoform generation by alternative mRNA splicing pathways from a single gene containing two different exons corresponding to amino acids 229-242, as recently proposed by Medford et al. (Medford, R. M., Nguyen, H. T., Destree, A. T., Summers, E., and Nadal-Ginard, B. (1984) Cell 38, 409-421). This proposal was based on analysis of a rat troponin T genomic DNA clone and a cDNA clone corresponding to one of the two alternatively spliced mRNAs. Our analysis of quail troponin T cDNA clones, apparently corresponding to two alternatively spliced mRNA species, provides important new evidence for this novel mechanism of troponin T isoform generation and reveals the differential splicing mechanism to be of great antiquity, antedating the bird-mammal divergence. One of the quail alternative isoform sequences clearly corresponds to one of the rat sequences, but the other quail alternative sequence does not correspond to either of the rat sequences. This result suggests a greater complexity of troponin T gene structure or a greater diversity of troponin T isoform genes than is currently known, and also has implications for the functional significance of the troponin T protein isoform heterogeneity. Comparison of quail and mammal alternative isoform sequences also reveals strongly conserved features which suggest that all the isoform alternative amino acid sequences are variations on a common structural theme.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号