首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bottlenose dolphin stock structure in the northeast Atlantic remains poorly understood. However, fine scale photo-id data have shown that populations can comprise multiple overlapping social communities. These social communities form structural elements of bottlenose dolphin (Tursiops truncatus) populations, reflecting specific ecological and behavioural adaptations to local habitats. We investigated the social structure of bottlenose dolphins in the waters of northwest Ireland and present evidence for distinct inshore and offshore social communities. Individuals of the inshore community had a coastal distribution restricted to waters within 3 km from shore. These animals exhibited a cohesive, fission-fusion social organisation, with repeated resightings within the research area, within a larger coastal home range. The offshore community comprised one or more distinct groups, found significantly further offshore (>4 km) than the inshore animals. In addition, dorsal fin scarring patterns differed significantly between inshore and offshore communities with individuals of the offshore community having more distinctly marked dorsal fins. Specifically, almost half of the individuals in the offshore community (48%) had characteristic stereotyped damage to the tip of the dorsal fin, rarely recorded in the inshore community (7%). We propose that this characteristic is likely due to interactions with pelagic fisheries. Social segregation and scarring differences found here indicate that the distinct communities are likely to be spatially and behaviourally segregated. Together with recent genetic evidence of distinct offshore and coastal population structures, this provides evidence for bottlenose dolphin inshore/offshore community differentiation in the northeast Atlantic. We recommend that social communities should be considered as fundamental units for the management and conservation of bottlenose dolphins and their habitat specialisations.  相似文献   

2.
We investigated patterns of abundance and distribution for coastal migratory Atlantic bottlenose dolphins (Tursiops truncatus) that appear seasonally in the nearshore waters of Virginia Beach, Virginia. The study was conducted along 24 km of shoreline at the southern point of the Chesapeake Bay mouth from April 1994 to March 1995. This is the first study to investigate the relationship between the abundance of coastal migratory dolphins and factors that might affect their movement. A profile analysis of variance revealed significant differences in local abundance and distribution throughout the year. Dolphin number was positively correlated with water temperature and not correlated with photoperiod. Although prey distribution and abundance are two factors thought to affect dolphin presence, in this study the relationship between these two factors and dolphin abundance was unclear. Greater numbers of dolphins were found in the ocean section of the study area. However, significantly higher ratios of neonatal dolphins were observed in the bay section, suggesting the bay serves as a nursery area. The observed relationship between local dolphin abundance and environmental factors in Virginia may provide insight into dolphin distribution and migration along the Atlantic coast of the United States.  相似文献   

3.
The identification of species and population boundaries is important in both evolutionary and conservation biology. In recent years, new population genetic and computational methods for estimating population parameters and testing hypotheses in a quantitative manner have emerged. Using a Bayesian framework and a quantitative model‐testing approach, we evaluated the species status and genetic connectedness of bottlenose dolphin (Tursiops spp.) populations off remote northwestern Australia, with a focus on pelagic ‘offshore’ dolphins subject to incidental capture in a trawl fishery. We analysed 71 dolphin samples from three sites beyond the 50 m depth contour (the inshore boundary of the fishery) and up to 170 km offshore, including incidentally caught and free‐ranging individuals associating with trawl vessels, and 273 dolphins sampled at 12 coastal sites inshore of the 50 m depth contour and within 10 km of the coast. Results from 19 nuclear microsatellite markers showed significant population structure between dolphins from within the fishery and coastal sites, but also among dolphins from coastal sites, identifying three coastal populations. Moreover, we found no current or historic gene flow into the offshore population in the region of the fishery, indicating a complete lack of recruitment from coastal sites. Mitochondrial DNA corroborated our findings of genetic isolation between dolphins from the offshore population and coastal sites. Most offshore individuals formed a monophyletic clade with common bottlenose dolphins (T. truncatus), while all 273 individuals sampled coastally formed a well‐supported clade of Indo‐Pacific bottlenose dolphins (T. aduncus). By including a quantitative modelling approach, our study explicitly took evolutionary processes into account for informing the conservation and management of protected species. As such, it may serve as a template for other, similarly inaccessible study populations.  相似文献   

4.

We report the first recorded interactions between bottlenose dolphin (Tursiops truncatus) and Commerson’s dolphins (Cephalorhynchus commersonii). The diurnal behavioral patterns of bottlenose dolphins in Bahía Engaño, Argentina, were similar to those described for other coastal populations around the world. The majority of the feeding bouts were recorded near the mouth the Chubut River. When not feeding near the river, bottlenose dolphins generally swam along the coast, and interactions with Commerson’s dolphins were recorded very close to the shore on two occasions during a 3-year period. In the first event, both species were feeding on a fish school. The second interaction was aggressive in nature, involving one juvenile and three adult bottlenose dolphins with several Commerson’s dolphins. Two of the adult bottlenose dolphins attacked the Commerson’s dolphins. We propose that the observed behavior represented defense of the juvenile bottlenose dolphin.

  相似文献   

5.
The objective of the work was to characterize the presence of spontaneous micronucleated erythrocytes (MNES) from peripheral blood of bottlenose dolphins (Tursiops truncatus) to evaluate the possibility to use this species as potential bioindicator of genotoxic compounds. Forty-eight blood samples from 12 bottlenose dolphins were obtain from three Mexican dolphinariums, and from 10 dolphins was possible to obtain more than one sample at different sampling times. Smears were processed and observed with an epifluorescence microscope. The average of MNES and polychromatic erythrocytes (PCE) from the 48 samples was 24.3 +/- 6.1 MNES/10,000 total erythrocytes (TE), and 9.1 +/- 5.5 PCE/1,000 TE. MNES and PCE number did not show differences between gender and age. No variations in the MNES values of the bottlenose dolphins that were sampled more than one occasion were found. Comparisons among dolphinariums revealed differences in MNES frequency, with the highest significant frequency observed in dolphins from dolphinarium "A" (26.0 +/- 5.9 MNES/10,000 TE) than dolphinarium "B" (19.5 +/- 3.1 MNES/10,000 TE) (p < 0.05) and dolphinarium "C" (18.6 +/- 3.5 MNES/10,000 TE) (p < 0.007). The presence of MNES and PCE in the bottlenose dolphin may provide a useful marine mammal model to detect DNA damage by means of micronuclei test in peripheral blood erythrocytes to evaluate genotoxicity and cytotoxicity expositions.  相似文献   

6.
Observations of bottlenose dolphins ( Tursiops truncatus ) in Florida Bay, Florida, between 2002 and 2005 revealed the use of three distinct foraging tactics. The goal of this study was to identify ecological correlates with tactic use and describe the impact of foraging specializations on the overall habitat use and distribution patterns of this dolphin population. Foraging tactics showed strong association with contrasting environmental characteristics, primarily depth. Locations of two of these tactic groups were spatially repulsed. Analyses of sighting histories of individual dolphins observed at foraging events determined that dolphins which employed one tactic never employed the other, and vice versa . Although bottlenose dolphins have plastic foraging behaviors, dolphins in Florida Bay appear to specialize in one tactic and subsequently limit their overall distribution patterns to coincide with habitats that facilitate success using that foraging tactic. This study demonstrates how foraging behavior can be an ecological determinant of overall dolphin habitat use patterns and works to create spatial structure within a population due to consistent mapping of tactics onto environmental variation. These foraging specializations potentially impact the social and demographic patterns of this dolphin population. The possible evolutionary mechanisms behind this intraspecific variation, including resource limitation and social learning, are considered.  相似文献   

7.
Long‐term studies often rely on natural markings for individual identification across time. The primary method for identification in small cetaceans relies on dorsal fin shape, scars, and other natural markings. However, dorsal fin markings can vary substantially over time and the dorsal fin can become unrecognizable after an encounter with a boat or shark. Although dorsal fins have the advantage in that they always break the water surface when the cetacean breathes, other physical features, such as body scars and pigmentation patterns can supplement. The goal of this study was to explore the use of dorso‐lateral pigment patterns to identify wild bottlenose dolphins. We employed photographic pigment matching tests to determine if pigmentation patterns showed (1) longitudinal consistency and (2) bilateral symmetry using a 30 yr photographic database of bottlenose dolphins (Tursiops aduncus). We compared experienced dolphin researchers and inexperienced undergraduate student subjects in their ability to accurately match images. Both experienced and inexperienced subjects correctly matched dolphin individuals at a rate significantly above chance, even though they only had 10 s to make the match. These results demonstrate that pigment patterns can be used to reliably identify individual wild bottlenose dolphins, and likely other small cetacean species at other sites.  相似文献   

8.
The prevailing view among researchers of dolphin communication is that bottlenose dolphins possess an individualized whistle contour; known as the ‘signature whistle’, it accounts for 74–95 % of a dolphin's whistle repertoire and functions to signal the individual identity of the whistler. This study used a new quantitative technique, termed the contour similarity technique (CS technique), and reports on the quantitative comparison of whistles from the individuals of three different social groups of bottlenose dolphins in socially interactive contexts. Results suggest that captive adult dolphins share several different whistle types including one predominant whistle type shared by all individuals across three different social groups. These analyses suggest a different interpretation of the dolphin whistle repertoire than has previously been proposed by proponents of the signature whistle hypothesis. In addition, results from our study support the results of early studies, published before the advent of the signature whistle hypothesis, in which investigators reported a large whistle repertoire within socially interactive captive and free-ranging groups and a predominant whistle type similar to that found in our study. Our results, combined with the results from earlier studies of dolphin vocal behaviour, suggest that the signature whistle hypothesis is incomplete and that dolphin whistle repertoires need to be analysed with respect to behavioural context and social relationships. In addition, these results suggest that contour discrimination and other acoustic features of whistles need to be tested in perception and categorization experiments.  相似文献   

9.
Hemoglobin (Hb) variability is a commonly used index of phylogenetic differentiation and molecular adaptation in fish enabling them to adapt to different ecological conditions. In this study, the characteristics of Hbs from two Sturgeon species of the Southern Caspian Sea Basin were investigated. After extraction and separation of hemoglobin from whole blood, the polyacrylamide gel electrophoresis (SDS-PAGE), cellulose acetate electrophoresis, and isoelectric focusing (IEF) were used to confirm Hb variabilities in these fishes. We showed that although both species have variable Hbs with different isoelectric points, their dominant Hbs can be identified. Ion exchange on CM-cellulose chromatography was used for purification of the dominant Hbs from these fishes. The accuracy of the methods was confirmed by IEF and SDS-PAGE. Spectral studies using fluorescence spectrophotometery indicated that although the Hbs from these fishes had similar properties they exhibited clear differences with human Hb. A comparative study of Hbs alpha-helix secondary substructures was performed by circular dichroism spectropolarimetry (CD) analysis. UV–vis spectrophotometery was also utilized to measure oxygen affinity of Hbs by sodium dithionite. Oxygen affinities of these Hbs were compared using Hb–oxygen dissociation curves. Together, these results demonstrate a significant relationship between oxygen affinity of fish hemoglobins and environmental partial pressure of oxygen.  相似文献   

10.
Boat-based photoidentification surveys of bottlenose dolphins (Tursiops truncatus) were conducted from 1982 to 1989 in three discrete coastal study areas within the Southern California Bight: (1) Santa Barbara, California; (2) Orange County, California; (3) Ensenada, Baja California, Mexico. A total of 207 recognizable dolphins were identified in these three “secondary” study areas. These individuals were compared to 404 dolphins identified from 1981 to 1989 in our “primary” study area, San Diego, California, to examine the coastal movement patterns of bottlenose dolphins within the Southern California Bight. A high proportion of dolphins photographed in Santa Barbara (88%), Orange County (92%), and Ensenada (88%) were also photographed in San Diego. Fifty-eight percent (n= 120) of these 207 dolphins exhibited back-and-forth movements between study areas, with no evidence of site fidelity to any particular region. Minimum range estimates were 50 and 470 km. Minimum travel-speed estimates were 11-47 km/d, and all dolphin schools sighted during the study were within 1 km of the shore. These data suggest that bottlenose dolphins within the Southern California Bight are highly mobile within a relatively narrow coastal zone. Home-range dimensions and movement patterns for many vettebrate species are influenced, in part, by variation in food resources. The unique range characteristics documented during this study may reflect the highly dynamic nature of this coastal ecosystem and the associated patchy distribution of food resources available to these bottlenose dolphins.  相似文献   

11.
Lacaziosis (lobomycosis; Lacazia loboi) is a fungal skin disease that naturally occurs only in humans and dolphins. The first reported case of lacaziosis in a bottlenose dolphin Tursiops truncatus occurred in 1970 in Sarasota Bay, Florida, USA, and subsequent photo-ID monitoring of the Sarasota Bay dolphin population has revealed persistence of the disease. The objectives of this study were to estimate lacaziosis prevalence (P) in 2 bottlenose dolphin populations on the west coast of Florida (Sarasota Bay and Charlotte Harbor) and compare disease occurrence to other published estimates of lacaziosis in dolphin populations across the globe. Historic photographic records of dolphins captured and released for health assessment purposes (Sarasota Bay) and photo-ID studies (Charlotte Harbor) were screened for evidence of lesions consistent with lacaziosis. Health assessment data revealed a prevalence of lacaziosis in the Sarasota Bay bottlenose dolphin population between 2 and 3%, and analyses of photo-ID data provided a lacaziosis-like prevalence estimate of 2% for Charlotte Harbor dolphins. With the exception of lacaziosis prevalence estimates for dolphins inhabiting the Indian River Lagoon (P = 0.068; P = 0.12), no statistically significant differences were seen among Sarasota Bay, Charlotte Harbor, and other published estimates. Although lacaziosis is a rare disease among these dolphin populations, studies that assess disease burden among different populations can assist with the surveillance of this zoonotic pathogen.  相似文献   

12.
Using photo‐identification data, bottlenose dolphin (Tursiops truncatus) populations can be differentiated based on their use of particular estuaries or coastal habitats. Questions remain, however, about the validity of such fine‐scale population partitioning and whether the resulting assemblages utilize unique forage bases. To address the issue of forage base use, stable isotopes of carbon (δ13C), nitrogen (δ15N) and sulfur (δ34S) were analyzed from skin tissues (n= 74) of bottlenose dolphins sampled seasonally along the coast and in three estuaries near Charleston, South Carolina. Autumn values of δ34S, δ15N, and δ13C and summer values of δ34S indicated that dolphins sampled from these four assemblages utilized unique forage bases, despite limited sample sizes. Likewise, autumn and spring differences in δ15N and δ13C values were evident in the North Edisto River, and in δ34S from dolphins sampled from all three estuarine assemblages; no seasonal differences were identified in the coastal assemblage. Results demonstrate the importance of considering spatial and temporal variation in forage base when developing local management plans for bottlenose dolphin and highlight the discriminatory power of δ34S for estuarine and coastal marine mammals. These results also suggest that stable isotopes could be developed as a complementary tool for photo‐identification based partitioning of bottlenose dolphin populations.  相似文献   

13.
Factors determining bottlenose dolphin association with bottom trawlers were studied off the Balearic Islands, western Mediterranean, by studying dolphin distribution around the islands and their interaction with fishing operations. Results showed that bottlenose dolphins avoided the upper shelf (shallower than 50 m) in the warm season, but not in the cold season and that the slope was avoided all year round. Bottlenose dolphins approached most of the trawlers surveyed in the continental shelf, but seldom interacted with those operating in the slope in the warm season. As a consequence, the average depth of trawling operations that attracted dolphins was shallower than those not attracting dolphins. No statistical difference was observed in the average catch of hauls conducted in the presence or in the absence of dolphins. However, discriminant analysis showed differences in catch composition between hauls with and without dolphin presence, but this difference was not attributed to the palatability of the catch, but to influence of trawling depth on the catch. It is concluded that depth is the main factor ruling occurrence of interaction.  相似文献   

14.
Most harbour porpoises found dead on the north-east coast of Scotland show signs of attack by sympatric bottlenose dolphins, but the reason(s) for these violent interactions remain(s) unclear. Post-mortem examinations of stranded bottlenose dolphins indicate that five out of eight young calves from this same area were also killed by bottlenose dolphins. These data, together with direct observations of an aggressive interaction between an adult bottlenose dolphin and a dead bottlenose dolphin calf, provide strong evidence for infanticide in this population. The similarity in the size range of harbour porpoises and dolphin calves that showed signs of attack by bottlenose dolphins suggests that previously reported interspecific interactions could be related to this infanticidal behaviour. These findings appear to provide the first evidence of infanticide in cetaceans (whales, dolphins and porpoises). We suggest that infanticide must be considered as a factor shaping sociality in this and other species of cetaceans, and may have serious consequences for the viability of small populations.  相似文献   

15.
Despite the openness of the oceanic environment, limited dispersal and tight social structure often induce genetic structuring in marine organisms, even in large animals such as cetaceans. In the bottlenose dolphin, mitochondrial and nuclear DNA analyses have revealed the existence of genetic differentiation between pelagic (or offshore) and coastal (or nearshore) ecotypes in the western North Atlantic, as well as between coastal populations. Because previous studies concentrated on continental margins, we analysed the population structure of bottlenose dolphins in two of the most isolated archipelagos of the North Atlantic: the Azores and Madeira. We analysed 112 samples collected on live animals in the two archipelagos, and nine samples collected on stranded animals in Madeira and mainland Portugal. Genetic analyses consisted in molecular sexing, sequencing of part of the mitochondrial hyper-variable region, and screening of ten microsatellite loci. We predicted that: (1) there is at least one pelagic and one or more coastal populations in each archipelago; (2) populations are differentiated between and possibly within archipelagos. Contrary to these predictions, results indicated a lack of population structure in the study area. In addition, comparison with published sequences revealed that the samples from the Azores and Madeira were not significantly differentiated from samples of the pelagic population of the western North Atlantic. Thus, bottlenose dolphins occurring in the pelagic waters of the North Atlantic belong to a large oceanic population, which should be regarded as a single conservation unit. Unlike what is known for coastal populations, oceanic bottlenose dolphins are able to maintain high levels of gene flow.  相似文献   

16.
There is a need for biological information to support current stock designations of bottlenose dolphins (Tursiops truncatus) in the Gulf of Mexico. The existence of many inshore, resident “communities” raises questions as to the relationship these dolphins may hold with dolphins inhabiting neighboring inshore and coastal areas. In this study, population subdivision was examined among four resident, inshore bottlenose dolphin stocks (Sarasota Bay, FL, Tampa Bay, FL, Charlotte Harbor, FL and Matagorda Bay, TX) and one coastal stock (1–12 km offshore) in the Gulf of Mexico. Evidence of significant population structure among all areas was found on the basis of both mitochondrial DNA (mtDNA) control region sequence data and nine nuclear microsatellite loci. Estimates of relatedness showed no population contained a significantly high number of related individuals, while separate AMOVAs for males and females indicated that both sexes exhibit a significant level of site philopatry. Results presented here provide the first genetic evidence of population subdivision between the coastal Gulf of Mexico and adjacent inshore areas along the central west coast of Florida. Such strong genetic subdivision is surprising given the short geographical distance between many of these areas and the lack of obvious geographic barriers to prevent gene flow. These findings support the current, separate identification of stocks for bottlenose dolphins inhabiting the eastern coastal and inshore areas of the Gulf of Mexico.  相似文献   

17.
Morbillivirus infection is widespread among odontocetes of the western Atlantic and Gulf of Mexico. Serologic evidence of infection in bottlenose dolphins, Tursiops truncatus , was first detected during an epizootic along the mid-Atlantic coast in 1987. Here, we report recurrent epizootics in the coastal dolphin population since at least the early 1980s based on serological surveys and regional stranding frequencies. The first observed epizootic of this series occurred in the Indian and Banana Rivers in 1982 and was followed by others on the mid-Atlantic coast in 1987–1988 and in the Gulf of Mexico between 1992 and 1994. This temporal pattern of infection is likely facilitated by the population size and its fragmentation into relatively discrete coastal communities. Introduction of morbillivirus into a community with a sufficient number of naive hosts may precipitate an epizootic, depending on the potential for transmission within the group. Propagation of an epizootic along the coast is probably determined by frequency of contact between adjacent communities and seasonal migrations.
Morbillivirus antibodies were also detected in serum from offshore bottlenose dolphins. The sero-prevalence in the latter may be higher than in coastal dolphins because of their close association with enzootically infected pilot whales ( Globicephala spp.). Occasional contact between offshore and coastal dolphins may provide an epizootiologic link between pilot whales and coastal dolphin communities.  相似文献   

18.
Between 2007 and 2009, we witnessed three aggressive interactions between harbor porpoises and bottlenose dolphins in Monterey Bay, California. This is the first time such aggression has been documented in the Pacific, and the first time a harbor porpoise was collected immediately after witnessing its death, inflicted by bottlenose dolphins. Of the bottlenose dolphins present, 92% were males either confirmed (61%) or putative (31%). Since 2005, 44 harbor porpoise deaths inflicted by bottlenose dolphins were documented in California. Aberrant behavior was rejected as a cause of aggression, based on widespread documentation of similar behaviors in other populations of free‐ranging bottlenose dolphins. The evidence for interspecies territoriality as a form of competition for prey was weak: there is little dietary overlap and there are differences in bottlenose dolphin and harbor porpoise distribution patterns in California. Object‐oriented play was plausible as a form of practice to maintain intraspecific infanticidal skills or a form of play to maintain fighting skills between male associates. Contributing factors could be high‐testosterone levels, as attacks occurred at the height of the breeding season, and/or a skewed operational sex ratio. Ultimately, we need more information about bottlenose dolphin social structure at the time of the aggression.  相似文献   

19.
The authors review the literature on bottlenose dolphin ecology, behavior and social organization, focusing on data collected on free-ranging animals. Most bottlenose dolphins studied to date have had definable home ranges, and behavioral, morphological and biochemical information indicates discrete stocks in some areas. Bottlenose dolphins appear to form relatively permanent social groups based on sex and age. Mother—calf bonds are long-lasting. Movement patterns are extremely variable from location to location but are relatively predictable at any given site. Food resources are one of the most important factors affecting movements. Bottlenose dolphin behavior is very flexible, and these dolphins are generally active day and night. Feeding peaks in the morning and afternoon have been observed at several sites. Social behavior is an important component of daily activities. Sharks are the most significant predator on bottlenose dolphins in most areas, but captive and wild studies show that dolphins and sharks frequently live in harmony as well. Human activities may be helpful, harmful or neutral to bottlenose dolphins, but interactions with humans are frequent for these coastal cetaceans.  相似文献   

20.
Bottlenose dolphins exhibit complex social affiliations that may be shaped by interactions among individuals. Affiliative body contact among dolphins may repair deteriorated relationships or reduce tension within the group following aggressive interactions. We investigated the time-series association between one type of contact behavior (flipper-rubbing) and aggression by continuous observation of three captive bottlenose dolphins. For all three dolphin pairs, the elapsed time to aggressive events was significantly greater following flipper-rubbing. In two dolphin pairs comprised of a young male and an adult female, one-zero score of inter-opponent flipper-rubbing was higher for 10 min following aggressive bouts (post-AG periods) than for the same length of control (Ctrl) periods. For all three focal pairs, one-zero score of third-party rubbing was higher for post-AG than Ctrl periods. Neither the direction of rubbing nor the identity of the partner that approached prior to rubbing showed any significant tendencies. Flipper-rubbing may contribute to restore friendly relationships between former opponents or reduce conflicts in at least juvenile-adult female associations. Our results also give preliminary suggestions of the functions of third-party flipper-rubbing among bottlenose dolphins, including tension easing by the third party, or displacement as a result of aggressive interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号