首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Porphyridium cruentum was grown in 10 L batch culture at 18°C, pH 8.0 and 28‰ salinity. The cells were harvested in the stationary phase and the fatty acid composition analysed by GC and tocopherol content by HPLC. A total of 14 fatty acids were identified including saturated fatty acids (13:0, 14:0, 14:0 iso, 15:0, 16:0, 16:0iso) and monounsaturated fatty acids (MUFAs; 16:1(n-7), 18:1(n-7), 18:1(n-9). Polyunsaturated fatty acids (PUFAs) were the predominant fatty acids detected, reaching 43.7% of total fatty acids in the stationary phase of culture. Among the PUFAs, eicosapentaenoic acid (EPA, 20:5(n-3)) was dominant (25.4%), followed by 12.8% arachidonic acid (AA, 20:4(n-6)). α-Tocopherol and γ-tocopherol contents were 55.2 μg g−1 dry weight and 51.3 μg g−1 dry weight respectively.  相似文献   

2.
This study examines the composition of lipids, fatty acids, and fatty aldehydes in two marine bryozoan species, Berenicea meandrina and Dendrobeania flustroides, from the Sea of Okhotsk. The share of neutral lipids was up to 57.3% in D. flustroides and 54.9% in B. meandrina; the share of polar lipids was 33.2 and 40.4%, respectively. In all, 57 fatty acids (FA) and 9 aldehydes were identified in total lipids. The main FAs were 16:0, 18:0, 22:6n-3, and 20:5n-3. The content of branched saturated FA in bryozoans was on the average 6.4%. Three isomers of 16:1 (n-9, n-7, and n-5), five isomers of 18:1 (n-13, n-11, n-9, n-7, and n-5), four isomers of 20:1 (n-13, n-11, n-9, and n-7), as well as 22:1n-9 and 22:1n-13 were found; the presence of 7-methyl-6-hexadienoic acid (on the average, 3.0% of total FAs) was demonstrated. Non-methylene-inter-rupted FAs contributed 8.9 and 1.6% of the total FAs in D. flustroides and B. meandrina, respectively, and were identified as 20:2(5,11), 20:2(7,13), 20:3(5,11,14), 22:2(7,13), and 22:2(7,15). In B. meandrina, minor amounts of 24:0, 24:1, 25:0, 26:0, 24:4n-3, 26:3(5,9,19), and 28:3(5,9,19) were found, suggesting sponge biofouling on some bryozoan colonies. Aldehydes (branched saturated and unsaturated C16–19 homologues) did not exceed 10.3 and 1.9% of the total FAs in D. flustroides and B. meandrina, respectively. The presence of the FA markers that are characteristic of microalgae, protozoans, and detritus in bryozoan lipids agrees well with data on polytrophic feeding of these bryozoans.  相似文献   

3.
Four Paraeuchaeta species and three aetideids were frequently encountered along 51°30′S in the Atlantic sector of the Southern Ocean. Paraeuchaeta antarctica was most abundant close to the Antarctic Polar Front. Within the genera Paraeuchaeta and Gaetanus, congeners usually partitioned the water column. Euchaetidae had high lipid (≤37% dry mass, DM in adult females) and wax ester contents (≤22% DM). Fatty acid composition of Paraeuchaeta spp. was dominated by monounsaturated moieties, especially 16:1(n-7) and 18:1(n-9), while fatty alcohols were mainly saturated. Surprisingly, only the bathypelagic P. barbata contained moderate amounts of 20:1(n-9) and 22:1(n-11) fatty acids (≤14%) and high levels of the respective fatty alcohols (≤50%), generally considered trophic biomarkers for calanid copepods as prey. Thus, herbivorous calanid copepods seem to be a readily available prey source at bathypelagic depths, indicating that their seasonal vertical migration provides a “trophic shortcut” from primary production at the surface to the interior of the ocean. Aetideidae also contained substantial levels of total lipid (14–36% DM), but wax esters contributed only up to 12% DM in copepodite stages C5 of Gaetanus spp., whereas other stages of Gaetanus and Aetideopsis minor only contained ≤6% DM of wax esters. The fatty acid compositions of Aetideidae were more balanced with 16:0, 18:1(n-9), 20:5(n-3), and 22:6(n-3) as important components, indicating a generally omnivorous feeding behaviour.  相似文献   

4.
Changes in the fatty acid composition of docosahexaenoic acid (DHA)-producing Schizochytrium limacinum SR21 were investigated. The addition of cyanocobalamin, which is an active component of vitamin B12, decreased the content of odd-chain fatty acids such as pentadecanoic acid (C15:0) and heptadecanoic acid (C17:0). Cyanocobalamin may upregulate the cobalamin-dependent methylmalonyl-CoA mutase, which converts propionic acid to succinic acid, thereby decreasing the content of odd-chain fatty acids. The addition of p-toluic acid resulted in a decrease in docosapentaenoic acid (DPA, 22:5n-6) content and an increase in eicosapentaenoic acid (EPA, 20:5n-3) content in a dose-dependent manner. Two additional peaks of fatty acids, characterized as Δ4,7,10,14-eicosatetraenoic acid (20:4n-7) and Δ4,7,10,14-docosatetraenoic acid (22:4n-9), were detected.  相似文献   

5.
This study assesses the combined effect of feeding and short-term thermal stress on various physiological parameters and on the fatty acid, sterol, and alcohol composition of the scleractinian coral Turbinaria reniformis. The compound-specific carbon isotope composition of the lipids was also measured. Under control conditions (26°C), feeding with Artemia salina significantly increased the symbiont density and chlorophyll content and the growth rates of the corals. It also doubled the concentrations of almost all fatty acid (FA) compounds and increased the n-alcohol and sterol contents. δ13C results showed that the feeding enhancement of FA concentrations occurred either via a direct pathway, for one of the major polyunsaturated fatty acid (PUFA) compounds of the food (18:3n-3 FA), or via an enhancement of photosynthate transfer (indirect pathway), for the other coral FAs. Cholesterol (C27Δ5) was also directly acquired from the food. Thermal stress (31°C) affected corals, but differently according to their feeding status. Chlorophyll, protein content, and maximal photosynthetic efficiency of photosystem II (PSII) decreased to a greater extent in starved corals. In such corals, FA concentrations were reduced by 33%, (especially C16, C18 FAs, and n-3 PUFA) and the sterol content by 27% (especially the C285,22 and C285). The enrichment in the δ13C signature of the storage and structural FAs suggests that they were the main compounds respired during the stress to maintain the coral metabolism. Thermal stress had less effect on the lipid concentrations of fed corals, as only FA levels were reduced by 13%, with no major changes in their isotope carbon signatures. In conclusion, feeding plays an essential role in sustaining T. reniformis metabolism during the thermal stress.  相似文献   

6.
The Δ9-elongase isolated from Thraustochytrium aureum, which contains a high level of polyunsaturated fatty acids (PUFAs), was demonstrated to be associated with the synthesis of C20 PUFAs. The TaELO gene contains a 825 bp ORF that encodes a protein of 274 amino acids that shares a high similarity with other PUFA elongases. The expression of the TaELO gene in Pichia pastoris resulted in the elongation of linoleic acid (LA, C18:2; n-6) and α-linolenic acid (ALA, C18:3; n-3) to eicosadienoic acid (EDA, C20:2; n-6) and eicosatrienoic acid (ETrA, C20:3; n-3), respectively. The endogenous conversion rate of LA and ALA to EDA and ETrA was 32.68 and 38.57%, respectively. In addition, TaELO was also able to synthesize eicosenoic acid (C20:1; n-9) from oleic acid (OA, C18:1; n-9), even though the conversion level was low (2.81%). Furthermore, TaELO was able to carry out the 6Δ-elongation of γ-linolenic acid (GLA, C18:3; n-6) to dihomo-γ-linolenic acid (DGLA, C20:3; n-6) and Δ5-elongation of eicosapentaenoic acid (EPA, C20:5; n-3) to docosapentaenoic acid (DPA, C22:5; n-3). The conversion rate of GLA to DGLA and EPA to DPA were 93 and 28.36%, respectively. The TaELO protein was confirmed to have multifunctional activities, such as Δ9, Δ6, and Δ5-elongations as well as the elongation of monounsaturated fatty acid.  相似文献   

7.
Polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic and docosahexaenoic acids (EPA and DHA), are abundantly synthesized by some phytoplankton species and play a key role in the marine food chain. However, they are generally considered to be sensitive to oxidation by UV radiation (UV-R). In order to investigate the effect of UV-R on the lipid composition of two marine microalgae, Pavlova lutheri and Odontella aurita, they were exposed to a combination of UVA-R and UVB-R with a total UV-R daily dose of 110 kJ m−2. Chlorophyll a, photochemical efficiency, and lipid composition were then determined on days 3, 5, and 8 of UV-R exposure. In P. lutheri, exposure to UV-R treatment led to a decrease in the proportions of PUFAs, such as EPA and DHA, especially into structural lipids (glycolipids and phospholipids). Our findings reveal a reduction of 20% in EPA levels and 16% in DHA levels, after 8 days of UV-R treatment. In O. aurita, exposure to UV-R did not change the fatty acid composition of the total lipids and lipid fractions of the cells. EPA levels remained high (27–28% of total lipids) during the 8 days of treatment. Consequently, the n-3 fatty acid content of P. lutheri was altered which highlights the sensitivity of this species to UV-R, whereas the results obtained for O. aurita suggest a more UV-R resistance. As a result, in latitude countries with medium UV-R level, outdoor “race-way” culture of O. aurita could yield a high-EPA algal biomass, whatever the seasonal variations in UV-R.  相似文献   

8.
Phlorotannins are considered inter alia to act protective to a variety of stressors, while lipids in spores are known to fuel various metabolic processes during spore release and settlement. Here, phlorotannin production in zoospores/juvenile gametophytes in relation to lipid metabolism was investigated for the first time in order to study-related metabolic costs. The experiment was carried out in Ny-?lesund (Svalbard, Arctic) within the development from spores to juvenile gametophytes of the brown alga Saccharina latissima over 20 days. In the release stage, the total phlorotannin content of single zoospores was 1.5 × 10−7 μg and 1.9 × 10−7 μg in the surrounding medium. Upon release, the total amount of lipids was 1.76 × 10−5 μg lipid zoospore−1 containing the major fatty acids 16:0 and 18:0, 18:1(n-9), 18:2 (n-6), 18:3(n-3), 20:4(n-6), and 20:5(n-3). During development from spores to gametophytes, a decrease in fatty acids was observed via electron microscopy and a decrease in the fatty acid 18:1(n-9) from 45 to 30% was measured by gas chromatography in particular. While phlorotannin content within the spores remained stable, phlorotannins accumulated in the surrounding medium of gametophytes to 4.0 × 10−7 μg phlorotannins spore−1 indicating exudation processes. Results obtained support the key and multifunctional role of lipids in zoospore/gametophyte metabolism and may indicate that gametophytes of S. latissima need approximately 10 days to switch to photo-autotrophic strategies, becoming independent of storage lipids. In addition, fatty acids might represent an essential energy source to fuel adaptive responses.  相似文献   

9.
Abstract

The fatty acid composition, moisture, and total lipid of the eggs from the swimming crab, Portunus pelagicus, at three different embryonic stages (within 24 h, during the eye placode stage and the final heart beat stage), were measured. Results showed that the moisture and lipid content significantly increased and decreased (p < 0.05), respectively, as the stages progressed. The most prevalent fatty acids that were initially deposited included C16:0, C18:1n-9, and C18:0, while the most consumed fatty acids were C22:5n-6, C22:5n-3, and C20:1n-7. Among the major fatty acid groups, polyunsaturated fatty acids (PUFA) and long-chain PUFA (LC-PUFA) were consumed more than saturated fatty acids and significantly more (p < 0.05) than monounsaturated fatty acids (p < 0.05). Meanwhile, n-3 PUFA was deposited in significantly higher amounts (p < 0.05) than n-6 PUFA, but both were consumed at similar amounts at 43.4% and 41.3%, respectively. The relatively low amount of C20:5n-3 and C22:6n-3 consumption may indicate these fatty acids were conserved, while the essential fatty acids C18:3n-3 and C18:3n-6 were consumed at high amounts. These findings may have implications for broodstock nutrition in order to formulate a well-balanced diet.  相似文献   

10.
Matured females of two Lake Baikal endemic fish species, Comephorus baicalensis and Comephorus dybowski, have been investigated for lipid of the whole body and specific tissues (liver, muscles, ovaries), phospholipid classes and fatty acids of neutral and polar lipids. Total lipid in the body (38.9% fresh weight), liver (23.5%) and muscles (14.5%) of C. baicalensis were greater than those of C. dybowski (4.7, 8.7 and 2.6%, respectively); only their ovaries were similar (5.3 and 5.6% lipid, respectively). In both species, phosphatidylcholine and phosphatidylethanolamine were the major phospholipids, ranging from 60.7 to 75.1% of total phospholipid and 14.5–25.7%, respectively. In most cases, monounsaturated fatty acids (MUFA) were the major fatty acid group in C. baicalensis, whereas polyunsaturated fatty acids (PUFA) were the major group in C. dybowski. The MUFA 18:1(n-9) prevailed over other fatty acids in C. baicalensis and varied from 19% in polar lipids of muscles to 56.1% in neutral lipids of muscles. In polar lipid of C. dybowski, the PUFA 22:6(n-3) prevailed over other fatty acids in muscles and ovaries, while 16:0 dominated polar liver lipids and neutral lipids of all tissues. Other major fatty acids included 16:1(n-7), 18:1(n-7), and 20:5(n-3). Values of the (n-3)/(n-6) fatty acid ratio for neutral lipids of C. baicalensis (0.5–0.9) are well below the range of values characteristic either for marine or freshwater fish, while these values for polar lipids (1.6–1.8) are in the range typical of freshwater fish. Neutral lipid fatty acid ratios in C. dybowski (2.5–3.1) allow it to be assigned to freshwater fish, but polar lipids (2.8–3.7) leave it intermediary between freshwater and marine fish.  相似文献   

11.
Delta 6-fatty acid desaturase (D6DES) is used in the synthesis of polyunsaturated fatty acids (PUFAs) from microorganisms to higher animals, including arachidonic acid (ARA) and eicosapentaenoic acid (EPA). A 1,338 bp full-length cDNA encoding D6DES was cloned from Acanthopagrus schlegeli (AsD6DES) through degenerate- and RACE-PCR methods. A recombinant vector expressing AsD6DES (pYES-AsD6DES) was subsequently constructed and transformed into Saccharomyces cerevisiae to test the enzymatic activity of AsD6DES towards the production of n-6 and n-3 fatty acids. The exogenously expressed AsD6DES produced γ-linolenic acid (18:3 n-6) and stearidonic acid (18:4n-3) at 26 and 36% from exogenous linoleic acid (18:2n-6) and α-linolenic acid (18:3n-3), respectively, indicating that it is essentially a delta 6-fatty acid desaturase.  相似文献   

12.
Isochrysis galbana, a marine prymnesiophyte microalga, is able to produce a high level of long chain polyunsaturated fatty acids such as docosahexaenoic acid (DHA, C22:6n-3). In this article, a novel gene (IgASE2) that encoded a C18-Δ9 polyunsaturase fatty acids specific (C18-Δ9-PUFAs-specific) elongase was isolated and characterized from DHA-rich microalga, I. galbana H29. A full-length cDNA of 1653 bp was cloned by rapidamplification of cDNA ends (RACE) PCR techniques. The IgASE2 contained a 786 bp ORF encoding a protein of 261 amino acids that shared 87% identity with the reported Δ9-elongase IgASE1, a 44 bp 5′ untranslated region and an 823 bp 3′ untranslated region. The function of IgASE2 was demonstrated by its heterologous expression in Saccharomyces cerevisiae. In S. cerevisiae, IgASE2 elongated linoleic acid (LA, C18:2n-6), α-linolenic (ALA, C18:3n-3) to eicosadienoic acid (EDA, C20:2n-6) and eicosatrienoic acid (ETrA, C20:3n-3). The conversion ratios of LA to EDA and ALA to ETrA were 60.47 and 58.36%, respectively. However, IgASE2 could not catalyze the elongation reactions of oleic acid (OA, C18:1n-9) and other fatty acids. These results confirmed that IgASE2 had C18-Δ9-PUFAs-specific elongase activity.  相似文献   

13.
The total protein, carbohydrate, lipid and ash compositions, and fatty acid contents of two species of marine microalgae, the eustigmatophyte Nannochloropsis oculata (formerly ‘Chlorella sp., Japan’) and the chrysophyte Isochrysis sp. (Tahitian) used in tropical Australian mariculture, were studied. The microalgae were grown under a range of culture conditions (41 and 601 laboratory culture, 3001 bag culture, and 80001 outdoor culture) and four light regimes (100 to 107 μ E m−2 s−1, 240 to 390 μ E m−2 s−1, 340 to 620 μ E m−2 s−1, and 1100 to 1200 μE m−2 s−1 respectively) to determine the effect of light intensity on the chemical composition of large scale outdoor cultures. Laboratory and bag cultures were axenic and cultured in Walne medium while outdoor cultures were grown in a commercial medium designed for optimum nutrition in tropical outdoor aquaculture operations. Change in growth medium and photon flux density produced only small changes in the proximate biochemical composition of both algae. N. oculata and Isochrysis sp. both showed a trend towards slightly lower carbohydrate and higher chlorophyll a in shaded outdoor culture. Isochrysis sp. showed significant concentrations of the essential polyunsaturated fatty acid 22:6(n−3) (docosahexaenoic acid) from 5.3 to 10.3% of total fatty acid, and 20:5(n−3) (eicosapentaenoic acid) ranged from 0.6 to 4.1%. In contrast, N. oculata had high concentrations of 20:5(n−3) (17.8 to 39.9%) and only traces of 22:6(n−3). The fatty acid composition of Isochrysis sp. grown at high photon flux density (1100–1200 μE m−2 s−1) under outdoor culture showed a decrease in the percentage of several highly unsaturated fatty acids, including 20:5(n−3), and an increase in 22:6(n−3). N. oculata showed a similar decrease in the percentage of 20:5(n−3). High light intensity caused a decrease in the ratio of total C16 unsaturated fatty acids to saturated 16:0 in N. oculata, and a decrease in the ratio of total C18 unsaturated fatty acids to saturated 18:0 together with a decrease in the ratio of total unsaturated fatty acids to total saturated fatty acids in both microalgae.  相似文献   

14.
Isolation of algicidal compounds from Ulva fasciata revealed that the algicidal substances were the polyunsaturated fatty acids (PUFAs) as hexadeca-4,7,10,13-tetraenoic acid (HDTA) C16:4 n-3, octadeca-6,9,12,15-tetraenoic acid (ODTA) C18:4 n-3, α-linolenic acid (ALA) C18:3 n-3 and linoleic acid (LA) C18:2 n-6. The fatty acid composition of four species of Ulvaceae (U. fasciata, U. pertusa, U. arasakii and U. conglobota) was analyzed by capillary gas chromatography to investigate the relationship with the algicidal activity. The results indicate that highly algicidal species, U. fasciata and U. pertusa, showed higher contents of C16:4 n-3, C18:3 n-3, and C18:4 n-3. Concentrations of these PUFAs released from the seaweed in the culture medium were also analyzed. These PUFAs were found to be significantly active against Chattonella antiqua, C. marina, Fibrocapsa japonica, Heterosigma akashiwo, Karenia mikimotoi, moderately effective against Heterocapsa circularisquama, Prorocentrum minimum, P. sigmoides, Scrippsiella trochoidea, whereas low effective against Alexandrium catenella and Cochlodinium polykrikoides. It is suggested that the PUFAs are useful mitigation agents to remove several harmful effects without causing detrimental effects on surrounding marine living organisms.  相似文献   

15.
The influence of salinity on the growth, gross chemical composition and fatty acid composition of three species of marine microalgae,Isochrysis sp.,Nannochloropsis oculata andNitzschia (frustulum), was investigated. There was no significant change in growth rate ofIsochrysis sp. andN. (frustulum) over the experimental range of salinity (10–35 ppt), whileN. oculata had a significantly slower growth rate only at 35 ppt. The ash content of all three species increased with increasing salinity. Two species,Isochrysis sp. andN. oculata, showed significant linear increases in total lipid content with increasing salinity over the range 10 to 35 ppt.N. (frustulum) showed significant linear decrease in total lipids, with the highest percentage at low salinity within the range 10–15 ppt. Variation in salinity had only a slight effect on the total protein, the soluble carbohydrate and chlorophylla content of all species. All species responded to change in salinity by modifying their cellular fatty acid compositions. Significant positive correlations were observed between increase in salinity and increase in the percentage ofcis-9-hexadecenoic acid [16:1 (n-7)] over the entire experimental range inN. (frustulum) and between 25–35 ppt inN. oculata. There were curved relationships between salinity and percentage of hexadecanoic acid [16:0] inN. oculata andN. (frustulum), with maxima within the range 25–30 ppt for both species. A curved relationship was found between salinity and percentage of eicosapentaenoic acid [20–5(n-3)], forN. (frustulum), with lowest percentages of the fatty acid within the range 25–30 ppt. There was no consistent pattern in the percentages of other major fatty acids as functions of salinity. The Northern Territory isolateN. (frustulum) was unusual in having a substantial increase in total fatty acids with decreasing salinity (85 mg g–1 dry wt at 10 ppt compared with 33 mg g–1 at 35 ppt). The optimum salinities for the production of maximum amount of lipids and the essential fatty acids 20:5(n-3) and/or 22:6(n-3) were as follows:25 ppt forIsochrysis sp. [22:6(n-3)]; 20–30 ppt forN. oculata [20:5(n-3)]; 10–15 ppt forN. (frustulum) [20:5(n-3) and 22:6(n-3)].Author for correspondence  相似文献   

16.
To investigate both seasonal changes and possible intracorporal gradients of phospholipid fatty acid composition, skeletal muscles (n=124), hearts (n=27), and livers (n=34) from free-living brown hares (Lepus europaeus) were analyzed. Phospholipids from both skeletal muscles and heart had a high degree of unsaturation with 66.8±0.63% and 65.7±0.5% polyunsaturated fatty acids, respectively. This is the highest proportion of polyunsaturated fatty acids reported in any mammalian tissue. Polyunsaturated fatty acid content in skeletal muscles was 2.3% greater in winter compared to summer (F1,106=17.7; P=0.0001), which may reflect thermoregulatory adjustments. Arachidonate (C20:4n-6) showed the greatest seasonal increase (+2.5%; F=7.95; P=0.0057). However, there were no pronounced differences in polyunsaturated fatty acid content between skeletal muscles from different locations in the body (m. iliopsoas, m. longissimus dorsi and m. vastus). Total muscle phospholipid polyunsaturated fatty acid content was correlated with polyunsaturated fatty acid content in triacyglycerols from perirenal white adipose tissue depots (r2=0.61; P=0.004). Polyunsaturated fatty acids were enriched in muscle phospholipids (56.8–73.6%), compared to white adipose tissue lipids (20.9–61.2%), and liver phospholipids (25.1–54.2%). We suggest that the high degree of muscle membrane unsaturation is related to hare-specific traits, such as a high maximum running speed.Abbreviations BMR basal metabolic rate - DPA docosapentaenoic acid - DHA docosahexaenoic acid - FA fatty acid - MUFA monounsaturated fatty acid - PC principal component - PUFA polyunsaturated fatty acid - SFA saturated fatty acid - UI unsaturation index - WAT white adipose tissueCommunicated by: G. Heldmaier  相似文献   

17.
Changes in biomass and lipid biochemistry during egg development were studied in the tropical shrimps, Alpheus saxidomus and Palaemonetes schmitti, from Pacific Costa Rica. Freshly-laid eggs of P. schmitti were substantially smaller than those of A. saxidomus; dry mass decreased during embryogenesis in the former species but remained almost constant in the latter one. Water content of eggs close to hatching were similar among both species (roughly 75%). Newly-produced eggs of the two species contained ≈20% fatty acids per egg dry mass; a comparison with data concerning decapods inhabiting tropical and temperate waters revealed that eggs produced by shrimps inhabiting tropical waters tend to have a higher lipid egg content per dry mass than those from temperate regions. Major lipid classes in the eggs of both species were phospholipids and triacylglycerols which increased and decreased during the incubation period, respectively. The predominant fatty acids of P. schmitti eggs were 16:0, 20:5(n-3) and 22:6(n-3) whereas eggs of A. saxidomus showed high amounts of 16:0, 20:5(n-3) and 16:1(n-7), and remarkably low values of 22:6(n-3) fatty acid. Lipid utilization was more pronounced in P. schmitti; in A. saxidomus, eggs close to hatching still contained 70% of the initially deposited fatty acid content which may indicate an enhanced independence of the newly-hatched larvae on external energy resources. The observed differences may partially be related to different habitat preferences, however, the role of adaptation and phylogeny as determinants of egg lipid biochemistry in caridean shrimps remains to be clarified.  相似文献   

18.
Sensory analyses were conducted to determine levels of consumer acceptability of Porphyra yezoensis, P. umbilicalis, and P. amplissima to select appropriate species for aquaculture development in Maine (USA). The subjects included children (n = 67) and adults (n = 84); the children participated in study design by helping to select the 9 point hedonic scale used in the affective sensory tests. Two substrates were used; Porphyra was baked in crackers and also used as a coating for popcorn. No significant differences (p > 0.5) in acceptability of one species over another were observed in either trial, which suggests that native Atlantic species of Porphyra such as P. amplissima and P. umbilicalis have developmental potential in foods for North American consumers. Fatty acids were analyzed in the taste test material and in freshly collected P. umbilicalis; eicosapentaenoic acid [EPA; 20:5 (n-3)] and palmitic acid were the most common fatty acids. Quantitative analysis of EPA determined that freshly collected (January 2005) P. umbilicalis contained 3.2 mg EPA g dry wt−1 (74 mg EPA 100 g fresh wt−1). This concentration is not high enough to make P. umbilicalis a primary source of daily omega-3 fatty acids, but the favorable n-3/n-6 ratio (2-3:1) in these species contributes to their nutritional value.  相似文献   

19.
The yeast Candida bombicola (ATCC 22214) grown on primary carbon source glucose (100 g l−1) and secondary carbon, arachidonic acid (2 g l−1) produced mixture of sophorolipids up to 1.44 g l−1. The crude product was a heterogeneous mixture of sophorolipids, which are glycolipids of sophorose linked to the fatty acid through glycosidic bond between ω and ω−1 carbon of arachidonic acid. The derived sophorolipids were isolated by silica gel chromatography using dialysis tubing. The purified sophorolipids were characterized by ESI-MS and FT-IR. Acid hydrolysis of the resolved sophorolipids were characterized by ESI-MS for the presence of 20-hydroxy-5Z,8Z,11Z,14Z-eicosatetraenoic acid (20-HETE) and 19-hydroxy-5Z,8Z,11Z,14Z-eicosatetraenoic acid (19-HETE), compounds of pronounced pharmaceutical importance.  相似文献   

20.
Huang  Y.  Eglinton  G.  Ineson  P.  Bol  R.  Harkness  D. D. 《Plant and Soil》1999,216(1-2):35-45
The effects of nitrogen (N) fertilisation and elevated [CO2] on lipid biosynthesis and carbon isotope discrimination in birch (Betula pendula Roth.) transplants were evaluated using seedlings grown with and without N fertiliser, and under two concentrations of atmospheric CO2 (ambient and ambient+250 μmol mol-1) in solar dome systems. N fertilisation decreased n-fatty acid chain length (18:0/16:0) and the ratios of α-linolenate (18:2)/linoleate (18:1), whereas elevated [CO2] showed little effect on n-fatty acid chain length, but decreased the unsaturation (18:2+18:1)/18:0. Both N fertilisation and elevated [CO2] increased the quantity of leaf wax n-alkanes, whilst reducing that of n-alkanols by 20–50%, but had no simple response in fatty acid concentrations. 13C enrichment by 1–2.5‰ under N fertilisation was observed, and can be attributed to both reduced leaf conductance and increased photosynthetic consumption of CO2. Individual n-alkyl lipids of different chain length show consistent pattern of δ13C values within each homologue, but are in general 5–8‰ more depleted in 13C than the bulk tissues. Niether nitrogen fertilisation and elevated CO2 influenced the relationship between carbon isotope discrimination of the bulk tissue and the individual lipids. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号