首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The nucleotide sequence (572 bp) of the cytochrome b gene of the common shrew Sorex araneus was analyzed. In total, 92 animals of five chromosome races from 12 localities were studied. The median haplotype network has a pronounced star-like structure. The central haplotype common for all samples, except for the southern island sample of the race Sok, accounts for about 36%. The main characteristics of molecular variation in our work correspond to those obtained in other studies. We revealed the lack of a correlation between the genetic and geographic distances and also population structurization of the species. On the basis of variation of the haplotypes in the samples, a scenario of colonization of the postglacial territories by females of one or several close matrilines with subsequent rapid subdivision of the population into independent populations is discussed.  相似文献   

3.
4.
The Eurasian common shrew (Sorex araneus L.) is characterized by spectacular chromosomal variation, both autosomal variation of the Robertsonian type and an XX/XY(1)Y(2) system of sex determination. It is an important mammalian model of chromosomal and genome evolution as it is one of the few species with a complete genome sequence. Here we generate a high-precision cytological recombination map for the species, the third such map produced in mammals, following those for humans and house mice. We prepared synaptonemal complex (SC) spreads of meiotic chromosomes from 638 spermatocytes of 22 males of nine different Robertsonian karyotypes, identifying each autosome arm by differential DAPI staining. Altogether we mapped 13,983 recombination sites along 7095 individual autosomes, using immunolocalization of MLH1, a mismatch repair protein marking recombination sites. We estimated the total recombination length of the shrew genome as 1145 cM. The majority of bivalents showed a high recombination frequency near the telomeres and a low frequency near the centromeres. The distances between MLH1 foci were consistent with crossover interference both within chromosome arms and across the centromere in metacentric bivalents. The pattern of recombination along a chromosome arm was a function of its length, interference, and centromere and telomere effects. The specific DNA sequence must also be important because chromosome arms of the same length differed substantially in their recombination pattern. These features of recombination show great similarity with humans and mice and suggest generality among mammals. However, contrary to a widespread perception, the metacentric bivalent tu usually lacked an MLH1 focus on one of its chromosome arms, arguing against a minimum requirement of one chiasma per chromosome arm for correct segregation. With regard to autosomal chromosomal variation, the chromosomes showing Robertsonian polymorphism display MLH1 foci that become increasingly distal when comparing acrocentric homozygotes, heterozygotes, and metacentric homozygotes. Within the sex trivalent XY(1)Y(2), the autosomal part of the complex behaves similarly to other autosomes.  相似文献   

5.
The contact points of four karyotypic races (St. Petersburg, Moscow, Seliger and West Dvina) of the common shrew Sorex araneus L. were studied at the Valdai Hills (European Russia) in an area unimpeded by geographic barriers. The populations of the races are separated by narrow hybrid zones that represent the most complex heterozygous hybrid karyotypes. At these points of contact, the morphometric differentiation of karyotype races was examined in 12 cranial measurements in 190 shrews of a known karyotype. A comparison of the mean values in studied samples of immature shrews revealed statistically significant differences and the correlation of some measurements which describe the level of musculus temporalis. It has been proposed that morphometric differences in the karyotypic races were preserved and accumulated because of a 50% reduction of the frequencies of hybrids. The deviation from the Hardy-Weinberg ration in the frequencies of the genotype and haploid sets of chromosomes in the hybrid zones can be attributed to a number of fatalities of hybrid embryos or the nonrandom mating of karyotypic races. The ethological isolation might arise in the evolution of some karyotypic races from the reduced fitness of the hybrids.  相似文献   

6.
Thirty-three adult male common shrews (Sorex araneus L.) were collected from a hybrid zone between two chromosomal races that differed in Robertsonian metacentrics. Anaphase I nondisjunction frequencies were estimated on the basis of metaphase II counts. RIV and CV complex heterozygotes (four-element rings and five-element chains at meiosis I, respectively) had substantially higher nondisjunction rates than homozygotes and simple Robertsonian heterozygotes. However, at least in the case of RIV-forming hybrids, increased nondisjunction frequency did not result from malsegregation of the heterozygous complex. Extra elements found in hyperploid spreads were most frequently acrocentrics, that could not originate from a fully metacentric multivalent. Complex heterozygotes were also characterized by higher frequencies of univalents observed at diakinesis I. However, univalents did not originate from complex configurations, which were regularly formed with usually one chiasma per chromosome arm. Hence, we suppose that the presence of multivalents in the cell affects pairing and segregation of other elements at meiosis I.  相似文献   

7.
8.
This paper presents an electron microscopic analysis of the behavior and morphology of the sex chromosomes and autosomes during prophase I in the common shrew, Sorex araneus L. The pairing patterns of the X/Y1Y2 and autosomal Robertsonian trivalents are described.  相似文献   

9.
Karyotypes of the Petchora and Kirillov chromosomal races of the common shrew differ by six Robertsonian metacentrics with monobrachial homology, such that interracial F1 hybrids produce a ring-of-six configuration at meiosis I and are expected to suffer infertility. Mapping of 52 karyotyped individuals by using a unique global positioning system (GPS) revealed that the Kirillov-Petchora hybrid zone is positioned close to the river Mezen, which separated these races, and so may limit the migration of shrews across the contact zone. Although the population density of shrews was found to be markedly different with respect to habitats, the zone runs through a mosaic of habitats that are similar for both the Petchora and the Kirillov sides. This is one of the narrowest chromosomal hybrid zones among those studied in Sorex araneus with a standard cline width of about 1 km. The center of the cline is located on a bank occupied by the Petchora race at a distance of 0.4 km away from a riverine barrier. Interestingly, both the Kirillov race and hybrid individuals were found on a small island in the middle of a river fully flooded each spring. The frequencies of karyotypic variants allow us to consider the zone as an example of a bimodal zone. New Robertsonian and de novo whole-arm reciprocal translocations (WART) chromosomal variants found in the zone could be regarded as evidences of current evolutionary process in chromosomal hybrid zones.  相似文献   

10.
Chromosomal rearrangements are proposed to promote genetic differentiation between chromosomally differentiated taxa and therefore promote speciation. Due to their remarkable karyotypic polymorphism, the shrews of the Sorex araneus group were used to investigate the impact of chromosomal rearrangements on gene flow. Five intraspecific chromosomal hybrid zones characterized by different levels of karyotypic complexity were studied using 16 microsatellites markers. We observed low levels of genetic differentiation even in the hybrid zones with the highest karyotypic complexity. No evidence of restricted gene flow between differently rearranged chromosomes was observed. Contrary to what was observed at the interspecific level, the effect of chromosomal rearrangements on gene flow was undetectable within the S. araneus species.  相似文献   

11.
Variability of the cranial properties of chromosomal races Serov, Manturovo and Pechora of the common shrew were studied. A consistent increase of scull size in the Serov race with moving from the plain to highlands and a skull size decrease from low to high latitudes was detected. Interpopulation variability among different races was shown to be comparable with interracial variability or to exceed it. This suggests microevolution at the level of local populations.  相似文献   

12.
13.
An adult male common shrew with an XXY sex chromosome constitution was found in a natural population. The external appearance of the animal and size of the accessory glands were normal but the testes were as small as those of immature shrews. Histological preparations of the testis revealed seminiferous tubules containing only one type of cell, probably Sertoli cells, and interstitial cell hyperplasia.  相似文献   

14.
Ecological analysis of the helminthofauna of common shrew Sorex araneus L. from Samarskaya Luka (Samara Region) has been carried out. Twenty-three helminth species are found including 3 species of trematodes, 8 cestodes, 10 nematodes, and 2 acanthocephales. Dependence of the structure of helminthofauna on the host age is revealed.  相似文献   

15.
16.
Using one male‐inherited and eight biparentally inherited microsatellite markers, we investigate the population genetic structure of the Valais chromosome race of the common shrew (Sorex araneus) in the Central Alps of Europe. Unexpectedly, the Y‐chromosome microsatellite suggests nearly complete absence of male gene flow among populations from the St‐Bernard and Simplon regions (Switzerland). Autosomal markers also show significant genetic structuring among these two geographical areas. Isolation by distance is significant and possible barriers to gene flow exist in the study area. Two different approaches are used to better understand the geographical patterns and the causes of this structuring. Using a principal component analysis for which testing procedure exists, and partial Mantel tests, we show that the St‐Bernard pass does not represent a significant barrier to gene flow although it culminates at 2469 m, close to the highest altitudinal record for this species. Similar results are found for the Simplon pass, indicating that both passes represented potential postglacial recolonization routes into Switzerland from Italian refugia after the last Pleistocene glaciations. In contrast with the weak effect of these mountain passes, the Rhône valley lowlands significantly reduce gene flow in this species. Natural obstacles (the large Rhône river) and unsuitable habitats (dry slopes) are both present in the valley. Moreover, anthropogenic changes to landscape structures are likely to have strongly reduced available habitats for this shrew in the lowlands, thereby promoting genetic differentiation of populations found on opposite sides of the Rhône valley.  相似文献   

17.
We investigated the evolution of the biomechanics of the mandible in island and mainland populations of the common shrew on the west coast of Scotland. We predicted that climatic differences between populations should cause differences in prey composition leading to changes in the mechanical potential (MP) of the mandible. In females, MP was correlated with climate, with greater MP in warmer and drier habitats. In males, MP was significantly greater than in females but there was no relationship between male MP and climate. This led to increased sexual dimorphism in colder and wetter climates. The same pattern was found after a phylogenetic least squares analysis was conducted to account for shared phylogenetic history. We discuss possible reasons for this pattern, including male–male combat and the greater necessity of females to feed as efficiently as possible to meet their extremely high energy requirements during lactation.  相似文献   

18.
A total of 440 skulls of common shrews, Sorex araneus, from Germany and Europe (Croatia, Hungary, Austria, and Norway) were studied. The material represented six chromosomal races (Ulm, Laska, Drnholec, Mooswald, Jütland, and Abisko) assignable to the Western European and Northern European karyotypic groups. The race of a few samples was not determined. Twenty-one linear measurements were taken on skulls and mandibles and used in this study. Pearson correlations and multiple linear regressions were used to see the relationship of the cranial variables to altitude, latitude, the chromosomal race, and the geographic location. The results from the tested samples differed; the most negative correlations to latitude were found in the samples assigned to the Western European karyotypic group (WEK), the least negative ones in the samples of the Ulm race. These results indicate the converse of Bergmann's rule. But taking into consideration all the samples of the different karyotypic groups across Europe, the correlations to latitude included positive ones, which would indicate that Sorex follows Bergmann's rule in some of the variables. The studied material of different karyotypic groups could not be differentiated in discriminant analyses. The separation of the studied races within the WEK alone was slightly better, but about 30 % of ungrouped cases remained. Only the separation of the regional samples within one chromosomal race revealed better results but was still very different between the races. This indicates that within the races, regional differences might be strong enough for a separation of the samples and that within a karyotypic group, and even more so across karyotypic groups, regional differences conceal racial differences.  相似文献   

19.
The contact zone between Moscow and Western Dvina chromosomal races of common shrew Sorex araneus L. at the south of the Valdai Hights was traced over a distance of 20 km. Within this, close to parapatric, contact zone of chromosomal races the width of sympatry zone was about 500 m (the narrowest among currently known hybrid zones), and the proportion of hybrids was 24.3%. It was shown that in bimodal hybrid zones between chromosomal races of common shrew the width of sympatry zones varied from 0.5 to 13 km. This width does not correlate with the cytogenetic features of the hybrids, and seems to be determined by competitive relations between the races. The hybrid proportion is determined by the type of hybrid heterozygosity, and decreased in the race sympatry zone from 33-40 to 21.5-25.2%. The decrease of the hybrid proportion can be associated with the abnormal fertility of either the first generation, or the backcross hybrids.  相似文献   

20.
A Robertsonian karyotypic polymorphism in the common shrew in the Oxford area, first described in the 1950s, was re-examined. The polymorphism involves chromosome arm combinations kq, no and pr (characteristic of the Oxford karyotypic race), ko (characteristic of the Hermitage karyotypic race) and jl (found in both races). The polymorphism for jl was sporadic along a north-south transect through the Oxford area, with the frequency of the twin-acrocentric morph never exceeding 10%. The frequency of the Oxford race-specific metacentrics decreased and the frequency of the Hermitage race-specific metacentric ko increased from north to south along the transect. At a latitudinal grid reference of about 180 km, there was a high frequency of individuals with chromosome arms k, n, o and q in the ancestral acrocentric state. This was coincident with the area of occurrence of ko-kq and ko-no Oxford-Hermitage hybrids. Such hybrids are double Robertsonian heterozygotes with monobrachial homology and are likely to suffer reduced fertility in consequence. It is proposed that this is a source of selection against the monobrachial hybrids and hence results in an increase in frequency of the acrocentric morphs. This scheme goes some way to explain the clines of polymorphism for arm combinations kq, no and ko, but it is suggested that other selective factors are involved. It cannot explain the cline of polymorphism for pr, which is in general terms similar to that for kq and no, but is more shallow and centred further north.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号