首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hallucinogenic plant Salvia divinorum (i.e., "magic mint") is a member of the Sage family that has been used for divination and shamanism by the Mazatecs. Over the past decade or so, S. divinorum has been increasingly used recreationally. The neoclerodane diterpene salvinorin A is the active component of S. divinorum, and recently, the kappa opioid receptor (KOR) has been identified, in vitro and in vivo, as its molecular target. The discovery of KOR as the molecular target of salvinorin A has opened up many opportunities for drug discovery and drug development for a number of psychiatric and non-psychiatric disorders.  相似文献   

2.
Salvia divinorum Epling & Játiva-M. is a perennial herb belonging to the Lamiaceae family; its active ingredient, the neoclerodane diterpene salvinorin A, is a psychotropic molecule that produces hallucinations. A comparative evaluation of S. divinorum fresh and dried leaves, S. officinalis fresh leaves, and dried powdered leaves claimed to be S. divinorum was done. HPLC-MS data confirmed the presence of salvinorin A in both S. divinorun leaf extracts and the powdered leaves, whereas no salvinorin A was found in S. officinalis. The non-transcribed spacer (NTS) in the 5S-rRNA gene of all leaf samples and the dried powdered leaves was amplified by PCR using a pair of primers located at the 3' and 5' ends of the coding sequence of 5S-rRNA gene. The resulting PCR products (about 500bp for S. divinorum and 300bp for S. officinalis) were gel purified, subcloned into pGEM-T Easy vector and sequenced. By aligning the isolated nucleotide sequences, great diversities were found in the spacer region of the two species. Specific S. divinorum primers were designed on the sequence of the 5S-rRNA gene spacer region. In addition, a PCR-restriction fragment length polymorphism (PCR-RFLP) method was applied using NdeI and TaqI restriction enzymes. An NdeI site, absent in S. officinalis, was found in S. divinorum NTS region at 428-433bp. For TaqI, multiple sites (161-164, 170-173, and 217-220bp) were found in S. officinalis, whereas a unique site was found in S. divinorum (235-238bp). The results of this work show that the combined use of analytical chemical (HPLC-MS) and molecular (DNA fingerprinting) methods lead to the precise and unequivocal identification of S. divinorum.  相似文献   

3.
BACKGROUND AND AIMS: Salvia divinorum produces several closely related neoclerodane diterpenes. The most abundant of these, salvinorin A, is responsible for the psychoactive properties of the plant. To determine where these compounds occur in the plant, various organs, tissues and glandular secretions were chemically analysed. A microscopic survey of the S. divinorum plant was performed to examine the various types of trichomes present and to determine their distribution. METHODS: Chemical analyses were performed using thin layer chromatographic and histochemical techniques. Trichomes were examined using conventional light microscopy and scanning electron microscopy. KEY RESULTS: It was found that neoclerodane diterpenes are secreted as components of a resin that accumulates in peltate glandular trichomes, specifically in the subcuticular space that exists between the trichome head cells and the cuticle that encloses them. Four main types of trichomes were observed: peltate glandular trichomes, short-stalked capitate glandular trichomes, long-stalked capitate glandular trichomes and non-glandular trichomes. Their morphology and distribution is described. Peltate glandular trichomes were only found on the abaxial surfaces of the leaves, stems, rachises, bracts, pedicles and calyces. This was consistent with chemical analyses, which showed the presence of neoclerodane diterpenes in these organs, but not in parts of the plant where peltate glandular trichomes are absent. CONCLUSIONS: Salvinorin A and related compounds are secreted as components of a complex resin that accumulates in the subcuticular space of peltate glandular trichomes.  相似文献   

4.
Salvia divinorum Epling & Mtiva-M. is one of the vision-inducing plants used in ritual curing by the Mazatec Indians of central Mexico. The present status of research is summarized. Experiments with material collected at different Oaxacan sites confirmed that the mint has white (rather than blue) flowers with a purple calyx and that flowering is induced by short day length.  相似文献   

5.
Low molecular weight phenolics are suggested to have a role in mediating diet selection in mammalian herbivores. However, very little is known about low molecular weight phenolic profiles of African savanna woody species. We determined low molecular weight phenolic profiles of six woody species with different life history, morphological and functional traits. We investigated interspecific phytochemical variation between species and found that: (1) related Acacia species were chemically dissimilar; (2) similarity percentage analysis revealed that Acacia grandicornuta was most dissimilar from other species and that the evergreen and unpalatable Euclea divinorum had a qualitatively similar chemical profile to the deciduous and palatable Acacia exuvialis and Combretum apiculatum; (3) C. apiculatum had the highest chemical diversity; (4) relative to spineless plants, spinescent plants contained significantly less HPLC phenolics and condensed tannins; and (5) the major quantitative difference between the evergreen and unpalatable E. divinorum and other species was its high myricitrin concentration.  相似文献   

6.
Salvinorin A is a novel hallucinogen isolated from the widely available leaves of Salvia divinorum. Based on its mechanism of action, salvinorin A has shown potential as a stimulant abuse therapeutic. However, there are no methods for the detection of salvinorin A or its metabolites in biological fluids. In order to begin developing salvinorin A as a potential therapeutic, an understanding of its metabolism is needed. Here, a straightforward synthesis of a deuterium labeled analog of salvinorin A and its utility as an internal standard for the detection of salvinorin A and its metabolites in biological fluids by LC-MS is described.  相似文献   

7.
The clerodane diterpenoid salvinorin A (1), the main active component of the psychotropic herb Salvia divinorum, has been reported to be a potent agonist at the kappa-opioid receptor. Computer modeling suggested that splendidin (2) from S. splendens, as well as related compounds, might possess similar activities. In the present study, this hypothesis was tested by determination of the binding properties of a series of structural congeners, compounds 2-8, at the mu-, delta-, and kappa-opioid receptors. However, none of these compounds showed significant binding to any of the opioid-receptor subtypes, thus disproving the above hypothesis. The novel compounds 7 and 8 were obtained semi-synthetically by selective modification of salvifarin (5), isolated from Salvia farinacea, upon epoxide-ring opening with AcOH in the presence of indium(III) triflate. Also, the X-ray crystal structure of salvifaricin (6; Fig.), obtained from S. farinacea, was determined for the first time and used, in combination with in-depth NMR experiments, to elucidate the absolute configurations of the new products. Our experiments demonstrate that the relatively well-accessible diterpenoid 6 could be used as starting material for future studies into the structure-activity relationship at the kappa-opioid receptor.  相似文献   

8.
Salvinorin A, a compound isolated from the plant Salvia divinorum, is a potent and highly selective agonist for the kappa opioid receptor. For exploration of its structure and activity relationships, further modifications, such as reduction at the C(4) position, have been studied and a series of salvinorin A derivatives were prepared. These C(4)-modified salvinorin A analogues were screened for binding and functional activities at the human kappa-opioid receptor and several new full agonists have been identified.  相似文献   

9.
Bioactivity-guided fractionation of the leaves of Salvia divinorum has resulted in the isolation of three new neoclerodane diterpenoids: divinatorin D (1), divinatorin E (2), and salvinorin G (3), together with 10 known terpenoids, divinatorin C (4), hardwickiic acid (5), salvinorin-A (6), -B (7), -C (8), -D (9), -E (10), and -F (11), presqualene alcohol (12), and (E)-phytol (13). The structures of these three new compounds were characterized by spectroscopic methods. All these compounds were evaluated for their binding affinities to the human kappa opioid receptors. In comparison with divinatorin D (1), divinatorin E (2), and salvinorin G (3), salvinorin A (6) is still the most potent kappa agonist.  相似文献   

10.
Hydrogen sulfide (H(2)S) has become the hot new signaling molecule that seemingly affects all organ systems and biological processes in which it has been investigated. It has also been shown to have both proinflammatory and anti-inflammatory actions and proapoptotic and anti-apoptotic effects and has even been reported to induce a hypometabolic state (suspended animation) in a few vertebrates. The exuberance over potential clinical applications of natural and synthetic H(2)S-"donating" compounds is understandable and a number of these function-targeted drugs have been developed and show clinical promise. However, the concentration of H(2)S in tissues and blood, as well as the intrinsic factors that affect these levels, has not been resolved, and it is imperative to address these points to distinguish between the physiological, pharmacological, and toxicological effects of this molecule. This review will provide an overview of H(2)S metabolism, a summary of many of its reported "physiological" actions, and it will discuss the recent development of a number of H(2)S-donating drugs that show clinical potential. It will also examine some of the misconceptions of H(2)S chemistry that have appeared in the literature and attempt to realign the definition of "physiological" H(2)S concentrations upon which much of this exuberance has been established.  相似文献   

11.
Sphingosine‐1‐phosphate (S1P) is a signalling lipid that regulates many cellular processes in mammals. One well‐studied role of S1P signalling is to modulate T‐cell trafficking, which has a major impact on adaptive immunity. Compounds that target S1P signalling pathways are of interest for immune system modulation. Recent studies suggest that S1P signalling regulates many more cell types and processes than previously appreciated. This review will summarise current understanding of S1P signalling, focusing on recent novel findings in the roles of S1P receptors in innate immunity.  相似文献   

12.
Deoxyuridine triphosphate nucleotidohydrolase (dUTPase) (EC 3.6.1.23) derived from HeLa S3 cells has been purified to near homogeneity as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme has a specific activity of about 16,000 nmol of dUMP hydrolyzed per min/mg of protein. The dUTPase enzyme derived from HeLa S3 cells appears to be composed to two equal molecular mass subunits, each being about 22,500 daltons. Association of these subunits to produce a 45,000-dalton protein is promoted by MgCl2. In the presence of EDTA enzyme activity is abolished and the enzyme dissociates into its monomeric form. MgCl2 will completely reverse the inhibition caused by EDTA and promote subunit association. MnCl2 will also promote association of the dUTPase subunits. However, MnCl2 will not completely reverse inhibition by EDTA. In addition, purified dUTPase, extensively dialyzed to remove contaminating ions, is activated almost 2-fold by the addition of 5 mM MgCl2. In contrast, addition of 5 mM MnCl2 to the dialyzed enzyme preparation will cause more than a 50% decrease in enzyme activity. This data indicates that Mg2+ is the natural prosthetic group for this enzyme. The Km value of dUTP for the purified enzyme is 3 X 10(-6) M in the presence of MgCl2. The turnover number for this enzyme has been calculated to be 550 molecules of dUTP hydrolyzed per min under standard assay conditions. Infection of HeLa S3 cells with herpes simplex type 1 virus induces a distinct species of dUTPase. This new species of dUTPase has an isoelectric point of 8.0, compared to an isoelectric point in the range of 5.7 to 6.5 for the HeLa S3 dUTPase. Molecular weight determinations of this new species of dUTPase indicate that the native enzyme is monomeric with a molecular weight of about 35,000. The virally induced dUTPase is inhibited by EDTA and this inhibition is reversed by MgCl2. Unlike the HeLa S3 dUTPase, the virally induced enzyme does not appear to be composed of subunits.  相似文献   

13.
Grime's C - S - R triangle theory has been discussed in plant ecology for two decades, but it has rarely been tested, and not often dispassionately evaluated. We consider the theory from a community viewpoint, and attempt to develop and test predictions for plant communities. C - S - R assumes that in high-disturbance (ruderal, R ) patches or habitats, competition will be absent, or low in intensity. Testing this is problematic because of the difficulty of defining the intensity of competition, and we could find no rigorous evidence to support or refute the prediction. The theory also implies that in high-disturbance habitats there will be no difference in species composition between 'competition' and 'stress' sites, but from available evidence this does not seem to be true. C - S - R assumes that in stressful ( S ) habitats, competition will be low. This assumption is difficult to define or test, because of the overall difference in plant growth rate between habitats. A prediction from the theory is that in stressful habitats autosuccession should occur, i.e. that the climax species should regenerate directly, with no specialist secondary pioneer ( R ) species. There is some evidence that autosuccession occurs under the most extreme stresses of various types. Previous criticisms of C - S - R are evaluated. Only a few are considered valid, mainly those that emphasise that C - S - R theory is a considerable simplification of reality. Previous tests of C - S - R theory appear to be inconclusive. C - S - R theory is basically a combination of r / K theory and Leaf Amortisation theory. We conclude that there is limited support for the C - S - R theory. Whether the gain in generality that the theory offers justifies the loss via simplification that it involves is still an open question. As formulated, it has limited utility as a predictive model in community ecology. Yet, it is currently the most comprehensive and coherent theory for community ecology.  相似文献   

14.
Salvinorin A, the active component of the hallucinogenic sage Salvia divinorum, is an apparently selective and highly potent kappa-opioid receptor (KOR) agonist. Salvinorin A is unique among ligands for peptidergic G protein-coupled receptors in being nonnitrogenous and lipid-like in character. To examine the molecular basis for the subtype-selective binding of salvinorin A, we utilized an integrated approach using chimeric opioid receptors, site-directed mutagenesis, the substituted cysteine accessibility method, and molecular modeling and dynamics studies. We discovered that helix 2 is required for salvinorin A binding to KOR and that two residues (Val-108(2.53) and Val-118(2.63)) confer subtype selectivity. Intriguingly, molecular modeling studies predicted that these loci exhibit an indirect effect on salvinorin A binding, presumably through rotation of helix 2. Significantly, and in agreement with our in silico predictions, substituted cysteine accessibility method analysis of helix 2 comparing KOR and the delta-opioid receptor, which has negligible affinity for salvinorin A, revealed that residues known to be important for salvinorin A binding exhibit a differential pattern of water accessibility. These findings imply that differences in the helical orientation of helix 2 are critical for the selectivity of salvinorin A binding to KOR and provide a structurally novel basis for ligand selectivity.  相似文献   

15.
A DNA probe (D4S95) that detects a variable number of tandem repeats and a single-site-variation polymorphism after digestion with a single restriction enzyme, AccI, has previously been described. The order of this probe relative to the gene for Huntington disease (HD) and other previously described markers has not been established. Analysis of 24 affected families with HD has shown that D4S95 is in tight linkage with the gene causing HD, with a maximal Lod score of 12.489 at a theta of .03. D4S90 is a probe which maps to 4p16.3, telomeric to D4S95, and detects polymorphisms with HincII and other enzymes. In one affected person, recombination has occurred between D4S10 and HD, between D4S95 and HD, and in all likelihood also between D4S90 and HD, which strongly suggests that the gene for HD is telomeric to all these DNA probes. This suggests that the gene causing HD is located in the most distal region of the short arm of chromosome 4, flanked by D4S90 and the telomere, and supports the locus order D4S10-D4S95-D4S90-HD-telomere. D4S95 is a most useful DNA marker for predictive testing programs, while D4S90 will serve as a useful starting point for identifying DNA fragments closer to the gene for HD.  相似文献   

16.
Abstract

It has been argued that the issuance of the U.S. Exclusive Economic Zone (EEZ) Proclamation could lead to difficulties in the management of our coastal resources. This paper will examine the consequences of a U.S. EEZ for fisheries and marine transportation. For each sector consideration will be given to the inconsistencies which exist between the United Nations Convention on the Law of the Sea, the U.S. Proclamation, and existing U.S. legislation. The problems and opportunities presented by these inconsistencies are discussed. The authors conclude that, while some modifications of U.S. policy may be required, wide‐ranging changes are neither likely nor needed.  相似文献   

17.
Modification of the furan ring of salvinorin A (1), the main active component of Salvia divinorum, has resulted in novel neoclerodane diterpenes with opioid receptor affinity and activity. Conversion of the furan ring to an aldehyde at the C-12 position (5) has allowed for the synthesis of analogues with new carbon-carbon bonds at that position. Previous methods for forming these bonds, such as Grignard and Stille conditions, have met with limited success. We report a palladium catalyzed Liebeskind-Srogl cross-coupling reaction of a thioester and a boronic acid that occurs at neutral pH and ambient temperature to produce ketone analogs at C-12. To the best of our knowledge, this is the first reported usage of the Liebeskind-Srogl reaction to diversify a natural product scaffold. We also describe a one-step protocol for the conversion of 1 to 12-epi-1 (3) through microwave irradiation. Previously, this synthetically challenging process has required multiple steps. Additionally, we report in this study that alkene 9 and aromatic analogues 12, 19, 23, 25, and 26 were discovered to retain affinity and selectivity at kappa opioid receptors (KOP). Finally, we report that the furan-2-yl analog of 1 (31) has similar affinity to 1. Collectively, these findings suggest that different aromatic groups appended directly to the decalin core may be well tolerated by KOP receptors, and may generate further ligands with affinity and activity at KOP receptors.  相似文献   

18.
Multiple species of Pseudacteon phorid flies (Diptera: Phoridae) are currently being released throughout the southern United States to aid biological control of red imported fire ants, Solenopsis invicta Buren (Hymenoptera: Formicidae). It is anticipated that these flies will interfere with S. invicta foraging, allowing native ant assemblages to outcompete S. invicta for available resources. Numerous studies have shown a decrease in S. invicta foraging intensity when exposed to phorids. This study documents a behavioral change in phorid-exposed S. invicta colonies at a phorid release site in central Texas. Significant differences in forager size ratios were detected between phorid-exposed and phorid-absent colonies. A similar phenomenon was recently documented in the native range of these insects in South America as well. Experimental manipulation of ratios of S. invicta worker sizes has been shown to have important effects on colony success. This newly documented phorid-mediated S. invicta colony-level effect represents a significant shift in S. invicta foraging dynamics and may provide an additional mechanism by which phorids can influence S. invicta populations in their United States range.  相似文献   

19.
This review will concentrate on certain aspects of the nucleic acids of Entamoeba histolytica. Utilization and synthesis of purines and pyrimidines will initially be briefly discussed, e.g. salvage vs. de novo pathways, uptake studies and recognition of at least 4 transport loci. Data will be presented which show that the distribution and synthesis of RNA (to a lesser extent DNA) in the nucleus is basically the opposite one finds in other eukaryotes, viz. most RNA (ribosomal?) is synthesized (or accumulates) in the peripheral chromatin (functional equivalent of nucleolus?). The DNA is distributed and synthesized primarily throughout the nucleus. It is usually so dispersed that it will not stain with e.g. the standard Feulgen technique, unless the DNA condenses around the endosome (not a nucleolar equivalent) prior to nuclear division. Isolation of rRNA was difficult due, in part, to potent and difficult to inhibit RNase(s), some of which are apparently intimately bound to ribosomal subunits. The 25S (1.3 kDa), 17S (0.8 kDa) and 5S rRNA were recovered after isolation with a high salt SDS-DEP technique. This is the only procedure which enables us to obtain high yields of 25S rRNA; guanidine or guanidinium which permits isolation of intact functional mRNA results in isolation of small amounts of 25S RNA relative to 17S RNA. The 25S RNA is "nicked" (apparently during nuclear processing) and dissociates readily into 17S (0.7 kDa) and 16S (0.6 kDa) species, and a more rigidly bound 5.8S species. A small amount of "unnicked" 25S RNA was recovered with guanidine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Summary The site-specific complex formed between 16S RNA and the 30S ribosomal protein S4 from Escherichia coli has been degraded with pancreatic ribonuclease. We have recovered the nuclease-resistant RNA from this complex; we call it S4aR. S4aR will bind to S4, but it will not bind to the other 30S proteins that can form site-specific complexes with 16S RNA. The data presented here as well as elsewhere (Schaup et al., 1971b) show that S4aR has a mass of about 150000 daltons and that it is made up of several separate RNA fragments, each of which enters the complex with S4. We conclude that S4 interacts with several separate binding sites on the RNA and that these probably contain a great deal of double stranded structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号