首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Wheat (Triticum aestivum L.) deletion (del) stocks are valuable tools for the physical mapping of molecular markers and genes to chromosome bins delineated by 2 adjacent deletion breakpoints. The wheat deletion stocks were produced by using gametocidal genes derived from related Aegilops species. Here, we report on the origin, structure, and behavior of a highly rearranged chromosome 1BS-4. The cytogenetic and molecular marker analyses suggest that 1BS-4 resulted from 2 breakpoints in the 1BS arm and 1 breakpoint in the 1BL arm. The distal segment from 1BS, except for a small deleted part, is translocated to the long arm. Cytologically, chromosome 1BS-4 is highly stable, but shows a unique meiotic pairing behavior. The short arm of 1BS-4 fails to pair with a normal 1BS arm because of lack of homology at the distal ends. The long arm of 1BS-4 only pairs with a normal 1BS arm within the distal region translocated from 1BS. Therefore, using the 1BS-4 deletion stock for physical mapping will result in the false allocation of molecular markers and genes proximal to the breakpoint of 1BS-4.  相似文献   

2.
 Using a recently developed polymerase chain reaction (PCR)-mediated approach for physical mapping of single-copy DNA sequences on microisolated chromosomes of barley, sequence-tagged sites of DNA probes that reveal restriction fragment length polymorphisms (RFLP) localized on the linkage maps of rice chromosomes 5 and 10 were allocated to cytologically defined regions of barley chromosome 5 (1H). The rice map of linkage group 5, of about 135 cM in size, falls into two separate parts, which are related to the distal portions of both the short and long arms of the barley chromosome. The markers on the rice map of chromosome 5 were found to be located within regions of the barley chromosome which show high recombination rates. The map of rice chromosome 10, of about 75 cM in size, on the other hand, is related to an interstitial segment of the long arm of chromosome 5 (1H) which is highly suppressed in recombination activity. For positional cloning of genes of this homoeologous region from the barley genome, the small rice genome will probably prove to be a useful tool. No markers located on rice chromosomes were detected within the pericentric Giemsa-positive heterochromatin of the barley chromosome, indicating that these barley-specific sequences form a block which separates the linkage segments conserved in rice. By our estimate approximately half of the barley-specific sequences of chromosome 5 (1H) show a dispersed distribution, while the other half separates the conserved linkage segments. Received: 29 February 1996 / Accepted: 28 June 1996  相似文献   

3.
Group 1 chromosomes of the Triticeae tribe have been studied extensively because many important genes have been assigned to them. In this paper, chromosome 1 linkage maps of Triticum aestivum, T. tauschii, and T. monococcum are compared with existing barley and rye maps to develop a consensus map for Triticeae species and thus facilitate the mapping of agronomic genes in this tribe. The consensus map that was developed consists of 14 agronomically important genes, 17 DNA markers that were derived from known-function clones, and 76 DNA markers derived from anonymous clones. There are 12 inconsistencies in the order of markers among seven wheat, four barley, and two rye maps. A comparison of the Triticeae group 1 chromosome consensus map with linkage maps of homoeologous chromosomes in rice indicates that the linkage maps for the long arm and the proximal portion of the short arm of group 1 chromosomes are conserved among these species. Similarly, gene order is conserved between Triticeae chromosome 1 and its homoeologous chromosome in oat. The location of the centromere in rice and oat chromosomes is estimated from its position in homoeologous group 1 chromosomes of Triticeae.  相似文献   

4.
The complex hexaploid wheat genome offers many challenges for genomics research. Expressed sequence tags facilitate the analysis of gene-coding regions and provide a rich source of molecular markers for mapping and comparison with model organisms. The objectives of this study were to construct a high-density EST chromosome bin map of wheat homoeologous group 2 chromosomes to determine the distribution of ESTs, construct a consensus map of group 2 ESTs, investigate synteny, examine patterns of duplication, and assess the colinearity with rice of ESTs assigned to the group 2 consensus bin map. A total of 2600 loci generated from 1110 ESTs were mapped to group 2 chromosomes by Southern hybridization onto wheat aneuploid chromosome and deletion stocks. A consensus map was constructed of 552 ESTs mapping to more than one group 2 chromosome. Regions of high gene density in distal bins and low gene density in proximal bins were found. Two interstitial gene-rich islands flanked by relatively gene-poor regions on both the short and long arms and having good synteny with rice were discovered. The map locations of two ESTs indicated the possible presence of a small pericentric inversion on chromosome 2B. Wheat chromosome group 2 was shown to share syntenous blocks with rice chromosomes 4 and 7.  相似文献   

5.
A total of 944 expressed sequence tags (ESTs) generated 2212 EST loci mapped to homoeologous group 1 chromosomes in hexaploid wheat (Triticum aestivum L.). EST deletion maps and the consensus map of group 1 chromosomes were constructed to show EST distribution. EST loci were unevenly distributed among chromosomes 1A, 1B, and 1D with 660, 826, and 726, respectively. The number of EST loci was greater on the long arms than on the short arms for all three chromosomes. The distribution of ESTs along chromosome arms was nonrandom with EST clusters occurring in the distal regions of short arms and middle regions of long arms. Duplications of group 1 ESTs in other homoeologous groups occurred at a rate of 35.5%. Seventy-five percent of wheat chromosome 1 ESTs had significant matches with rice sequences (E < or = e(-10)), where large regions of conservation occurred between wheat consensus chromosome 1 and rice chromosome 5 and between the proximal portion of the long arm of wheat consensus chromosome 1 and rice chromosome 10. Only 9.5% of group 1 ESTs showed significant matches to Arabidopsis genome sequences. The results presented are useful for gene mapping and evolutionary and comparative genomics of grasses.  相似文献   

6.
A Pilz  H Moseley  J Peters  C Abbott 《Genomics》1992,12(4):715-719
The mapping of human chromosome 9 (HSA9) and mouse chromosome 2 (MMU2) has revealed a conserved syntenic region between the distal end of the long arm of chromosome 9 and proximal mouse chromosome 2. Two genes that map to human chromosome 9q34, gelsolin (GSN) and dopamine beta-hydroxylase (DBH), have not previously been located in the mouse. We have used an interspecific backcross to map each of these genes, by Southern blot analysis, to mouse chromosome 2. Gelsolin (Gsn) is tightly linked to the gene for complement component C5 (Hc), and dopamine beta-hydroxylase (Dbh) is just proximal to the Abelson leukemia virus oncogene (Abl) and alpha-spectrin 2 (Spna-2). The loci for gelsolin and dopamine beta-hydroxylase therefore form part of the conserved synteny between HSA9q and MMU2.  相似文献   

7.
Segments of the long arm of human chromosome 21 are conserved, centromere to telomere, in mouse chromosomes 16, 17, and 10. There have been 28 genes identified in human chromosome 21 between TMPRSS2, whose orthologue is the most distal gene mapped to mouse chromosome 16, and PDXK, whose orthologue is the most proximal gene mapped to mouse chromosome 10. Only 6 of these 28 genes have been mapped in mouse, and all are located on chromosome 17. To better define the chromosome 17 segment and the 16 to 17 transition, we used a combination of mouse radiation hybrid panel mapping and physical mapping by mouse: human genomic sequence comparison. We have determined the mouse chromosomal location of an additional 12 genes, predicted the location of 7 more,and defined the endpoints of the mouse chromosome 17 region. The mouse chromosome 16/chromosome 17 evolutionary breakpoint is between human genes ZNF295 and UMODL1, showing there are seven genes in the chromosome 16 segment distal to Tmprss2. The chromosome 17/chromosome 10 breakpoint seems to have involved a duplication of the gene PDXK, which on chromosome 21 lies immediately distal to the KIAA0179 gene. These data suggest that there may be as few as 21 functional genes in the mouse chromosome 17 segment. This information is important for defining existing and constructing more complete mouse models of Down syndrome.  相似文献   

8.
K. M. Devos  S. Chao  Q. Y. Li  M. C. Simonetti    M. D. Gale 《Genetics》1994,138(4):1287-1292
Comparison of the genetic map of maize chromosome 9 with maps of wheat chromosomes has revealed a high degree of colinearity between maize chromosome 9 and the group 4 and 7 chromosomes of wheat. The order of DNA markers on the short arm and a proximal region of the long arm of the genetic map of maize chromosome 9 is highly conserved with the marker order on the short arm and proximal region of the long arm of the genetic maps of the wheat homeologous group 7 chromosomes. A major part of the long arm of the genetic map of maize chromosome 9 is homeologous with a short segment in the proximal region of the long arm of the genetic map of the wheat group 4 chromosomes. Evidence is also presented that maize chromosome 9 has diverged from the wheat group 7 chromosomes by both a pericentric and a paracentric inversion. The paracentric inversion is probably unique to maize among the major cereal genomes.  相似文献   

9.
Wheat is one of the world's most important crops and is characterized by a large polyploid genome. One way to reduce genome complexity is to isolate single chromosomes using flow cytometry. Low coverage DNA sequencing can provide a snapshot of individual chromosomes, allowing a fast characterization of their main features and comparison with other genomes. We used massively parallel 454 pyrosequencing to obtain a 2x coverage of wheat chromosome 5A. The resulting sequence assembly was used to identify TEs, genes and miRNAs, as well as to infer a virtual gene order based on the synteny with other grass genomes. Repetitive elements account for more than 75% of the genome. Gene content was estimated considering non-redundant reads showing at least one match to ESTs or proteins. The results indicate that the coding fraction represents 1.08% and 1.3% of the short and long arm respectively, projecting the number of genes of the whole chromosome to approximately 5,000. 195 candidate miRNA precursors belonging to 16 miRNA families were identified. The 5A genes were used to search for syntenic relationships between grass genomes. The short arm is closely related to Brachypodium chromosome 4, sorghum chromosome 8 and rice chromosome 12; the long arm to regions of Brachypodium chromosomes 4 and 1, sorghum chromosomes 1 and 2 and rice chromosomes 9 and 3. From these similarities it was possible to infer the virtual gene order of 392 (5AS) and 1,480 (5AL) genes of chromosome 5A, which was compared to, and found to be largely congruent with the available physical map of this chromosome.  相似文献   

10.
11.
Two populations of single chromosome recombinant lines were used to map genes controlling flowering time on chromosome 5B of wheat, and one of the populations was also used to map a new frost resistance gene. Genetic maps were developed, mainly using microsatellite markers, and QTL analysis was applied to phenotypic data on the performance of each population collected from growth-room tests of flowering time and frost tolerance. Using a recombinant substitution-line mapping population derived from a cross between the substitution-line 'Chinese Spring' ('Cheyenne' 5B) and 'Chinese Spring' (CS), the gene Vrn-B1, affecting vernalization response, an earliness per se locus, Eps-5BL1, and a gene, Fr-B1, affecting frost resistance, were mapped. Using a 'Hobbit Sib' ('Chinese Spring' 5BL) x 'Hobbit Sib' recombinant substitution line mapping population, an earliness per se locus, Eps-5BL2 was mapped. The Vrn-B1 locus was mapped on the distal portion of the long arm of chromosome 5B, to a region syntenous with the segments of chromosomes 5A and 5D containing Vrn-A1 and Vrn-D1 loci, respectively. The two Eps-5BL loci were mapped close to the centromere with a 16-cM distance from each other, one in agreement with the position of a homoeologous locus previously mapped on chromosome 5H of barley, and suggested by the response of 'Chinese Spring' deletion lines. The Fr-B1 gene was mapped on the long arm of chromosome 5B, 40 cM from the centromeric marker. Previous comparative mapping data with rice chromosome 9 would suggest that this gene could be orthologous to the other Fr genes mapped previously by us on chromosomes 5A or 5D of wheat, although in a more proximal position. This study completes the mapping of these homoeoallelic series of vernalization requirement genes and frost resistance genes on the chromosomes of the homoeologous group 5 in wheat.  相似文献   

12.
Physical mapping of unique nucleotide sequences on identified rice chromosomes   总被引:10,自引:0,他引:10  
A physical mapping method for unique nucleotide sequences on specific chromosomal regions was developed combining objective chromosome identification and highly sensitive fluorescence in situ hybridisation (FISH). Four unique nucleotide sequences cloned from rice genomic DNAs, varying in size from 1.3 to 400 kb, were mapped on a rice chromosome map. A yeast artificial chromosome (YAC) clone with a 399 kb insert of rice genomic DNA was localised at the distal end of the long arm of rice chromosome (1q2.1) and a bacterial artificial chromosome (BAC) clone (180 kb) containing the rice leaf blast-resistant gene (Pi-b) was shown to occur at the distal end of the long arm of chromosome 2 (2q2.1). A cosmid (35 kb) with the resistance gene (Xa-21) against bacterial leaf blight was mapped on the interstitial region of the long arm on chromosome 11 (11q1.3). Furthermore a single RFLP marker, 1.29 kb in size, was mapped successfully to the distal region of the long arm of rice chromosome 4 (4q2.1). For precise localisation of the nucleotide sequences within the chromosome region, image analyses were effective. The BAC clone was localised to the specific region, 2q2.1:96.16, by image analysis. The result was compared with the known location of the BAC clone on the genetic map and the consistency was confirmed. The effectiveness and reliability in physically mapping nucleotide sequences on small plant chromosomes achieved by the FISH method using a variety of probes was unequivocally demonstrated.  相似文献   

13.
Comparative genetic maps among the Triticeae or Gramineae provide the possibility for combining the genetics, mapping information and molecular-marker resources between different species. Dense genetic linkage maps of wheat and barley, which have a common array of molecular markers, along with deletion-based chromosome maps of Triticum aestivum L. will facilitate the construction of an integrated molecular marker-based map for the Triticeae. A set of 21 cDNA and genomic DNA clones, which had previously been used to map barley chromosome 1 (7H), were used to physically map wheat chromosomes 7A, 7B and 7D. A comparative map was constructed to estimate the degree of linkage conservation and synteny of chromosome segments between the group 7 chromosomes of the two species. The results reveal extensive homoeologies between these chromosomes, and the first evidence for an interstitial inversion on the short arm of a barley chromosome compared to the wheat homoeologue has been obtained. In a cytogenetically-based physical map of group 7 chromosomes that contain restriction-fragment-length polymorphic DNA (RFLP) and random amplified polymorphic DNA (RAPD) markers, the marker density in the most distal third of the chromosome arms was two-times higher than in the proximal region. The recombination rate in the distal third of each arm appears to be 8–15 times greater than in the proximal third of each arm where recombination of wheat chromosomes is suppressed.  相似文献   

14.
DNA sequences homologous to single-copy genes were labelled with biotinylated dUTP or digoxygenin-labelled dUTP and hybridized to chromosome spreads. The hybridization signals were visualized with fluorescent avidin- or antibody-conjugates. This method allowed the detection of DNA targets on metaphase chromosomes as small as 1.4 kb. The hybridization signals were identified as fluorescent spots on both sister chromatids. Using an 18S rDNA probe as marker to identify chromosomes II and III it was possible to assign single-copy genes to these chromosomes. In the line V30 the endogenous chalcone synthase gene (chsA) was mapped at the distal end of the short arm of chromosome 5. The cDNA probe for this single-copy gene was 1.4 kb. In contrast, in the lines Mitchell and V26 chsA was localized at the distal end of the long arm of chromosome 3, suggesting that a chromosomal rearrangement had taken place. In a transformed Petunia uidA, transgenes were detected using a 2.7 kb probe. One transgene was mapped on one of the homologues of chromosome II proximal to the ribosomal genes. This homologue could be distinguished from the other by having the ribosomal genes at the distal end of the long arm. Using multicolour fluorescence in situ hybridization it was shown that it is possible to detect the endogenous chsA genes and both transgenes simultaneously.  相似文献   

15.
Summary Seven complete chromosomes and nine telocentric chromosomes in telotrisomics of barley (Hordeum vulgare L.) were identified and designated by an improved Giemsa N-banding technique. Karyotype analysis and Giemsa N-banding patterns of complete and telocentric chromosomes at somatic late prophase, prometaphase and metaphase have shown the following results: Chromosome 1 is a median chromosome with a long arm (Telo 1L) carrying a centromeric band, while short arm (Telo 1S) has a centromeric band and two intercalary bands. Chromosome 2 is the longest in the barley chromosome complement. Both arms show a centromeric band, an intercalary band and two faint dots on each chromatid at middle to distal regions. The banding pattern of Telo 2L (a centromeric and an intercalary band) and Telo 2S (a centromeric, two intercalary and a terminal band) corresponded to the banding pattern of the long and short arm of chromosome 2. Chromosome 3 is a submedian chromosome and its long arm is the second longest in the barley chromosome complement. Telo 3L has a centromeric (fainter than Telo 3S) and an intercalary band. It also shows a faint dot on each chromatid at distal region. Telo 3S shows a dark centromeric band only. Chromosome 4 is the most heavily banded one in barley chromosome complement. Both arms showed a dark centromeric band. Three dark intercalary bands and faint telomeric dot were observed in the long arm (4L), while two dark intercalary bands in the short arm (4S) were arranged very close to each other and appeared as a single large band in metaphase chromosomes. A faint dot was observed in each chromatid at the distal region in the 4S. Chromosome 5 is the smallest chromosome, which carries a centromeric band and an intercalary band on the long arm. Telo 5L, with a faint centromeric band and an intercalary band, is similar to the long arm. Chromosomes 6 and 7 are satellited chromosomes showing mainly centromeric bands. Telo 6S is identical to the short arm of chromosome 6 with a centromeric band. Telo 3L and Telo 4L were previously designated as Telo 3S and Telo 4S based on the genetic/linkage analysis. However, from the Giemsa banding pattern it is evident that these telocentric chromosomes are not correctly identified and the linkage map for chromosome 3 and 4 should be reversed. One out of ten triple 2S plants studied showed about 50% deficiency in the distal portion of the short arm. Telo 4L also showed a deletion of the distal euchromatic region of the long arm. This deletion (32%) may complicate genetic analysis, as genes located on the deficient segment would show a disomic ratio. It has been clearly demonstrated that the telocentric chromosomes of barley carry half of the centromere. Banding pattern polymorphism was attributed, at least partly, to the mitotic stages and differences in techniques.Contribution from the Department of Agronomy and published with the approval of the Director of the Colorado State University Experiment Station as Scientific Series Paper No. 2730. This research was supported in part by the USDA/SEA Competitive Research Grant 5901-0410-9-0334-0, USDA/ SEA-CSU Cooperative Research Grant 12-14-5001-265 and Colorado State University Hatch Project. This paper was presented partly at the Fourth International Barley Genetics Symposium, Edinburgh, Scotland, July 22–29, 1981  相似文献   

16.
K. S. Gill  B. S. Gill  T. R. Endo    E. V. Boyko 《Genetics》1996,143(2):1001-1012
The distribution of genes and recombination in the wheat genome was studied by comparing physical maps with the genetic linkage maps. The physical maps were generated by mapping 80 DNA and two phenotypic markers on an array of 65 deletion lines for homoeologous group 5 chromosomes. The genetic maps were constructed for chromosome 5B in wheat and 5D in Triticum tauschii. No marker mapped in the proximal 20% chromosome region surrounding the centromere. More than 60% of the long arm markers were present in three major clusters that physically encompassed <18% of the arm. Because 48% of the markers were cDNA clones and the distributions of the cDNA and genomic clones were similar, the marker distribution may represent the distribution of genes. The gene clusters were identified and allocated to very small chromosome regions because of a higher number of deletions in their surrounding regions. The recombination was suppressed in the centromeric regions and mainly occurred in the gene-rich regions. The bp/cM estimates varied from 118 kb for gene-rich regions to 22 Mb for gene-poor regions. The wheat genes present in these clusters are, therefore, amenable to molecular manipulations parallel to the plants with smaller genomes like rice.  相似文献   

17.
Summary In order to localize the genes coding for zein, the major storage protein of maize endosperm, zein 125I-mRNA and 3H-cDNA labelled at high specific activity were used for in situ hybridization on heterozygous interchanges and paracentric inversions of the KYS strain of Zea mays. The analysis of the diplotene-metaphase I microsporocytes indicated the presence of zein structural genes on the long arm of chromosomes 4 and 5, the short arm of chromosome 7 and the distal segment of the long arm of chromosome 10. The two hybridization sites on chromosomes 7 and 10 are found near opaque-2 and opaque-7 loci which are known to regulate zein synthesis. The present data are discussed in relation to results obtained by other authors using genetical mapping of zein genes.  相似文献   

18.
T. Foote  M. Roberts  N. Kurata  T. Sasaki    G. Moore 《Genetics》1997,147(2):801-807
Detailed physical mapping of markers from rice chromosome 9, and from syntenous (at the genetic level) regions of other cereal genomes, has resulted in rice yeast artificial chromosome (YAC) contigs spanning parts of rice 9. This physical mapping, together with comparative genetic mapping, has demonstrated that synteny has been largely maintained between the genomes of several cereals at the level of contiged YACs. Markers located in one region of rice chromosome 9 encompassed by the YAC contigs have exhibited restriction fragment length polymorphism (RFLP) using deletion lines for the Ph1 locus. This has allowed demarcation of the region of rice chromosome 9 syntenous with the ph1b and ph1c deletions in wheat chromosome 5B. A group of probes located in wheat homoeologous group 5 and barley chromosome 5H, however, have synteny with rice chromosomes other than 9. This suggests that the usefulness of comparative trait analysis and of the rice genome as a tool to facilitate gene isolation will differ from one region to the next, and implies that the rice genome is more ancestral in structure than those of the Triticeae.  相似文献   

19.
Five sequence-related genes encoding four adrenergic receptors and a serotonin receptor were localized to specific regions of four mouse chromosomes with respect to 11 other genetic markers. Linkage was established by the analysis of the haplotypes of 114 interspecific backcross mice. Adra2r (alpha 2-C10) and Adrb1r (beta 1) receptors mapped to the distal region of mouse chromosome 19. These genes were separated by 2.6 +/- 1.5 cM in a segment of mouse chromosome 19 that has a similar organization of these genes on the long arm of human chromosome 10. The Adra1r (alpha 1B), Adrb2r (beta 2), and Htra1 (5HT1A) genes mapped to proximal mouse chromosome 11, proximal mouse chromosome 18, and distal mouse chromosome 13, respectively. The organization of genes linked to these loci on regions of the three mouse chromosomes is consistent with the organization of homologous human genes on human chromosome 5. These findings further define the relationship of linkage groups conserved during the evolution of the mouse and human genomes. We have identified a region that may have been translocated during evolution and suggest that the human genomic organization of adrenergic receptors more closely resembles that of a putative primordial ancestor.  相似文献   

20.
J Z Wei  W F Campbell  R R Wang 《Génome》1995,38(6):1262-1270
Ten accessions of Russian wildrye, Psathyrostachys juncea (Fisch.) Nevski (2n = 2x = 14; NsNs), collected from different geographical regions were analyzed using the C-banding technique. C-banding pattern polymorphisms were observed at all levels, i.e., within homologous chromosome pairs of the same plant, among different individuals within accessions, between different accessions of the same geographic area, and among accessions of different origins. The seven homologous groups varied in the level of C-banding pattern polymorphism; chromosomes A, B, E, and F were more variable than chromosomes C, D, and G. The polymorphisms did not hamper chromosome identification in Ps. juncea, because each chromosome pair of the Ns genome had a different basic C-banding pattern and karyotypic character. A standard C-banded karyotype of Ps. juncea is proposed based on the overall karyotypes and C-bands in the 10 accessions. The C-bands on the Ns-genome chromosomes were designated according to the rules of nomenclature used in wheat. A deletion-translocation heterozygote of Russian wildrye was identified based on the karyotype and C-banding patterns established. The chromosome F pair consisted of a chromosome having the distal segment in the long arm deleted and a translocated chromosome having the distal segment of long arm replaced by the distal segment of the long arm of chromosome E. The chromosome E pair had a normal chromosome E and a translocated chromosome having the short arm and the proximal segment of the long arm of chromosome E and the distal segment of the long arm of chromosome F.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号