首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 444 毫秒
1.
Wolbachia are maternally inherited bacteria responsible for altering host reproduction. The two main groups found in insects, A and B, are based on molecular characterization using ribosomal, ftsZ, wsp (Wolbachia surface protein) or groE genes. We have used the wsp and ftsZ genes to study Wolbachia in byturid beetles. Byturus affinis contained a single copy of the ftsZ gene which grouped with A ftsZ sequences and a single copy of the wsp gene which grouped with B wsp sequences. This suggests that genetic exchange between A and B groups has occurred in the Wolbachia of this beetle. FtsZ and wsp sequences that were identical or nearly identical to those of B. affinis were found in B. tomentosus, suggesting that it also contains the same recombinant Wolbachia genotype. Most other byturids had more than one wsp sequence with at least one from the A and B groups, suggesting multiple copies of bacterial genes or multiple infections. B. ochraceus and B. unicolor both had four distinct wsp gene sequences. All the byturids had a closely related A wsp sequence and most a closely related B wsp sequence. Therefore, there appears to be an association between specific A and B wsp types.  相似文献   

2.
3.
Previous cell cycle studies have been based on cell-nuclearproliferation only. Eukaryotic cells, however, have double membranes-boundorganelles, such as the cell nucleus, mitochondrion, plastidsand single-membrane-bound organelles such as ER, the Golgi body,vacuoles (lysosomes) and microbodies. Organelle proliferations,which are very important for cell functions, are poorly understood.To clarify this, we performed a microarray analysis during thecell cycle of Cyanidioschyzon merolae. C. merolae cells containa minimum set of organelles that divide synchronously. The nuclear,mitochondrial and plastid genomes were completely sequenced.The results showed that, of 158 genes induced during the S orG2-M phase, 93 were known and contained genes related to mitochondrialdivision, ftsZ1-1, ftsz1-2 and mda1, and plastid division, ftsZ2-1,ftsZ2-2 and cmdnm2. Moreover, three genes, involved in vesicletrafficking between the single-membrane organelles such as vps29and the Rab family protein, were identified and might be relatedto partitioning of single-membrane-bound organelles. In othergenes, 46 were hypothetical and 19 were hypothetical conserved.The possibility of finding novel organelle division genes fromhypothetical and hypothetical conserved genes in the S and G2-Mexpression groups is discussed.  相似文献   

4.
5.
6.
FtsZ plays a crucial role in bacterial cell division, and may be involved in plastid division in eukaryotes. To investigate the evolution of the dividing apparatus from prokaryotes to eukaryotes, the ftsZ genes were isolated from the unicellular primitive red alga Galdieria sulphuraria. Two ftsZ genes (GsftsZ1 and GsftsZ2) were isolated. This suggests that duplication and divergence of the ftsZ gene occurred in an early stage of plant evolution. A comparison of the FtsZs of G. sulphuraria and other organisms shows that FtsZ is highly and universally conserved among prokaryotes, primitive eukaryotic algae, and higher plants. The GsftsZ2 gene seems to contain an intron. Southern hybridization analysis of the G. sulphuraria chromosomes separated by CHEF revealed that each ftsZ gene and its flanking region may be duplicated.  相似文献   

7.
The ultrasmall unicellular red alga Cyanidioschyzon merolae lives in the extreme environment of acidic hot springs and is thought to retain primitive features of cellular and genome organization. We determined the 16.5-Mb nuclear genome sequence of C. merolae 10D as the first complete algal genome. BLASTs and annotation results showed that C. merolae has a mixed gene repertoire of plants and animals, also implying a relationship with prokaryotes, although its photosynthetic components were comparable to other phototrophs. The unicellular green alga Chlamydomonas reinhardtii has been used as a model system for molecular biology research on, for example, photosynthesis, motility, and sexual reproduction. Though both algae are unicellular, the genome size, number of organelles, and surface structures are remarkably different. Here, we report the characteristics of double membrane- and single membrane-bound organelles and their related genes in C. merolae and conduct comparative analyses of predicted protein sequences encoded by the genomes of C. merolae and C. reinhardtii. We examine the predicted proteins of both algae by reciprocal BLASTP analysis, KOG assignment, and gene annotation. The results suggest that most core biological functions are carried out by orthologous proteins that occur in comparable numbers. Although the fundamental gene organizations resembled each other, the genes for organization of chromatin, cytoskeletal components, and flagellar movement remarkably increased in C. reinhardtii. Molecular phylogenetic analyses suggested that the tubulin is close to plant tubulin rather than that of animals and fungi. These results reflect the increase in genome size, the acquisition of complicated cellular structures, and kinematic devices in C. reinhardtii.  相似文献   

8.
9.
Complementation tests have revealed that the mutation in the filamenting mutant PAT84 is distinct from ftsA and has been designated ftsZ. By isolating transducing phages carrying various amounts of the bacterial deoxyribonucleic acid in this region, it was possible to locate the ftsZ gene between ftsA and envA. It is concluded that these cell division genes are expressed independently of the neighboring murein genes.  相似文献   

10.
Bacteria in the genus Wolbachia are widespread in arthropods and can induce sex-ratio distortion or cytoplasmic incompatibility in their hosts. The phylogeny of Wolbachia has been studied using 16S rDNA and the cell cycle gene ftsZ, but sequence variation of those genes is limited. The spacer 2 region (SR2) was amplified to determine whether this region would improve phylogenetic resolution. The SR2 of Wolbachia is 66 bp long, shows higher variation than ftsZ and has very low homology with closely related bacteria. Due to the small length of SR2 of Wolbachia, little phylogenetic information could be retrieved.  相似文献   

11.
12.
The complete nucleotide sequence of the plastid genome of the unicellular primitive red alga Cyanidioschyzon merolae 10D (Cyanidiophyceae) was determined. The genome is a circular DNA composed of 149,987 bp with no inverted repeats. The G + C content of this plastid genome is 37.6%. The C. merolae plastid genome contains 243 genes, which are distributed on both strands and consist of 36 RNA genes (3 rRNAs, 31 tRNAs, tmRNA, and a ribonuclease P RNA component) and 207 protein genes, including unidentified open reading frames. The striking feature of this genome is the high degree of gene compaction; it has very short intergenic distances (approximately 40% of the protein genes were overlapped) and no genes have introns. This genome encodes several genes that are rarely found in other plastid genomes. A gene encoding a subunit of sulfate transporter (cysW) is the first to be identified in a plastid genome. The cysT and cysW genes are located in the C. merolae plastid genome in series, and they probably function together with other nuclear-encoded components of the sulfate transport system. Our phylogenetic results suggest that the Cyanidiophyceae, including C. merolae, are a basal clade within the red lineage plastids.  相似文献   

13.
14.
The semen coagulum proteins have undergone substantial structural changes during evolution. In primates, these seminal vesicle-secreted proteins are known as semenogelin I (SEMG1) and semenogelin II (SEMG2). Previous studies on the common marmoset (Callithrix jacchus) showed that ejaculated semen from this New World monkey contains semenogelin, but it remained unclear whether it carries both genes or only SEMG1 and no SEMG2, like the closely related cotton-top tamarin (Saguinus oedipus). In this study we show that there are two genes, both expressed in the seminal vesicles. Surprisingly, the genes show an almost perfect sequence identity in a region of 1.25 kb, encompassing nearly half of the genes and containing exon 1, intron 1, and the first 0.9 kb of exon 2. The underlying molecular mechanism is most likely gene conversion, and a phylogenetic analysis suggests that SEMG1 is the most probable donor gene. The marmoset SEMG1 in this report differs from a previously reported cDNA by a lack of nucleotides encoding one repeat of 60 amino acids, suggesting that marmoset SEMG1 displays allelic size variation. This is similar to what was recently demonstrated in humans, but in marmosets the polymorphism was generated by a repeat duplication, whereas in humans it was a deletion. Together, these studies shed new light on the evolution of semenogelins and the mechanisms that have generated the structural diversity of semen coagulum proteins.  相似文献   

15.
16.
The major histocompatibility complex (MHC) class II molecule consists of noncovalently associated alpha and beta chains. In mammals studied so far, the class II MHC can be divided into a number of regions, each containing one or more alpha-chain genes (A genes) and beta-chain genes (B genes), and it has been known for some time that orthologous relationships exist between genes in corresponding regions from different mammalian species. A phylogenetic analysis of DNA sequences of class II A and B genes confirmed these relationships; but no such orthologous relationship was observed between the B genes of mammals and those of birds. Thus, the class II regions have diverged since the separation of birds and mammals (approximately 300 Mya) but before the radiation of the placental mammalian orders (60-80 Mya). Comparison of the phylogenetic trees for A and B genes revealed an unexpected characteristic of DP-region genes: DPB genes are most closely related to DQB genes, whereas DPA chain genes are most closely related to DRA-chain genes. Thus, the DP region seems to have originated through a recombinational event which brought together a DQB gene and a DRA gene (perhaps approximately 120 Mya). The 5' untranslated region of all class II genes includes sequences which are believed to be important in regulating class II gene expression but which are not conserved in known pseudogenes. These sequences are conserved to an extraordinary degree in the human DQB1 gene and its mouse homologue A beta 1, suggesting that regulation of expression of this locus may play a key role in expression of the entire class II MHC.  相似文献   

17.
18.
Cyanidioschyzon merolae is considered to be one of the most primitive of eukaryotic photosynthetic organisms. To obtain insights into the origin and evolution of the pathway of carotenoid biosynthesis in eukaryotic plants, the carotenoid content of C. merolae was ascertained, genes encoding enzymes of carotenoid biosynthesis in this unicellular red alga were identified, and the activities of two candidate pathway enzymes of particular interest, lycopene cyclase and beta-carotene hydroxylase, were examined. C. merolae contains perhaps the simplest assortment of chlorophylls and carotenoids found in any eukaryotic photosynthetic organism: chlorophyll a, beta-carotene, and zeaxanthin. Carotenoids with epsilon-rings (e.g., lutein), found in many other red algae and in green algae and land plants, were not detected, and the lycopene cyclase of C. merolae quite specifically produced only beta-ringed carotenoids when provided with lycopene as the substrate in Escherichia coli. Lycopene beta-ring cyclases from several bacteria, cyanobacteria, and land plants also proved to be high-fidelity enzymes, whereas the structurally related epsilon-ring cyclases from several plant species were found to be less specific, yielding products with beta-rings as well as epsilon-rings. C. merolae lacks orthologs of genes that encode the two types of beta-carotene hydroxylase found in land plants, one a nonheme diiron oxygenase and the other a cytochrome P450. A C. merolae chloroplast gene specifies a polypeptide similar to members of a third class of beta-carotene hydroxylases, common in cyanobacteria, but this gene did not produce an active enzyme when expressed in E. coli. The identity of the C. merolae beta-carotene hydroxylase therefore remains uncertain.  相似文献   

19.
Determining in situ growth rates for specific bacterioplankton is of critical importance to understanding their contributions to energy and matter flow in the Ocean. Quantifying expression of genes central to cell division is a plausible approach for obtaining these measurements. In order to test this approach's assumptions, a quantitative PCR assay targeting the cell division gene ftsZ in the ubiquitous NAC11-7 group of the Rhodobacterales order of marine bacteria was developed. ftsZ genes and their corresponding mRNAs were measured in diel in situ samples and in parallel on-deck incubations. Strong correlations between ftsZ expression and gene abundance (R-squared = 0.62) were observed in situ. Rapid changes in NAC11-7 ftsZ gene copies suggested that different populations from different water types were sampled with a significant positive correlation between ftsZ expression and water temperature (R-squared = 0.68, P < 0.001). An outlier to this trend occurred at a single time point (9:00), which was remarkably consistent with a concomitant peak in ftsZ expression in on-deck incubations, suggesting the possibility of synchronous population growth.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号