首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sublethal levels (10 to 100 micrograms/ml) of the chlorinated insecticide chlordane (1,2,4,5,6,7,8,8-octachloro-3a,4,7,7a-tetrahydro-4,7-methanoindan) were introduced into the growth medium of the marine bacterium, Aeromonas proteolytica. Chlordane inhibited the synthesis of an extracellular endopeptidase by almost 40% but exhibited no such inhibition of the extracellular aminopeptidase also produced during the growth cycle. Studied with 14C-labeled chlordane demonstrated that the insecticide was not biologically degraded under the test conditions used and that up to 75% of the recoverable chlordane was cell associated within 48 h. Studied with uniformly labeled L[14C]valine and [2-14C]uracil established that neither the transport nor the incorporation of these protein and ribonucleic acid precursors was inhibited by chlordane. Separation of the membrane fractions using isopycnic centrifugation localized 14C-labeled chlordane in the cytoplasmic membrane. Also, chlordane inhibited the membrane-bound adenosine 5'-triphosphatase while the soluble (released) form of this enzyme remained unaffected. These data indicate that chlordane resides in the cytoplasmic membrane and may cause specific alterations in membrane-associated activities.  相似文献   

2.
The ability of Phanerochaete chrysosporium to degrade six alkyl halide insecticides (aldrin, dieldrin, heptachlor, chlordane, lindane, and mirex) in liquid and soil-corncob matrices was compared by using 14C-labeled compounds. Of these, only [14C]lindane and [14C]chlordane underwent extensive biodegradation, as evidenced by the fact that 9.4 to 23.4% of these compounds were degraded to 14CO2 in 30 days in liquid cultures and 60 days in soil-corncob cultures inoculated with P. chrysosporium. Although [14C]aldrin, [14C]dieldrin, [14C]heptachlor, and [14D]mirex were poorly mineralized, substantial bioconversion occurred, as determined by substrate disappearance and metabolite formation. Nonbiological disappearance was observed only with chlordane and heptachlor.  相似文献   

3.
The ability of Phanerochaete chrysosporium to degrade six alkyl halide insecticides (aldrin, dieldrin, heptachlor, chlordane, lindane, and mirex) in liquid and soil-corncob matrices was compared by using 14C-labeled compounds. Of these, only [14C]lindane and [14C]chlordane underwent extensive biodegradation, as evidenced by the fact that 9.4 to 23.4% of these compounds were degraded to 14CO2 in 30 days in liquid cultures and 60 days in soil-corncob cultures inoculated with P. chrysosporium. Although [14C]aldrin, [14C]dieldrin, [14C]heptachlor, and [14D]mirex were poorly mineralized, substantial bioconversion occurred, as determined by substrate disappearance and metabolite formation. Nonbiological disappearance was observed only with chlordane and heptachlor.  相似文献   

4.
L-Thyroxine rapidly stimulated the accumulation of diacylglycerols in isolated hepatocytes and in liver when lipids were prelabeled with [14C]oleic acid or with [14C]CH3COONa. Perfusion of the liver of hypothyroid animals with L-thyroxine-containing solution or incubation of liver fragments with the hormone increased the content of diacylglycerols in the liver cells. The increase in [14C]diacylglycerol level in the liver cells was accompanied by a decrease in the level of [14C]phosphatidylcholine, whereas contents of other 14C-labeled phospholipids, such as phosphatidylethanolamine, sphingomyelin, lysophosphatidylcholine, phosphatidylinositol (PtdIns), phosphatidylinositol-4-phosphate (PtdIns4P), and phosphatidylinositol-4,5-bis-phosphate (PtdIns(4,5)P2), and of 14C-labeled fatty acids were the same as in the control. The L-thyroxine-induced accumulation of diacylglycerols in hepatocytes was not affected by neomycin but was inhibited by propranolol. Incubation of hepatocytes prelabeled with [14C]oleic acid with L-thyroxine and ethanol (300 mM) was accompanied by generation and accumulation of [14C]phosphatidylethanol that was partially suppressed by 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H7). L-Thyroxine was responsible for the translocation of protein kinase C from the cytosol into the membrane fraction and for a many-fold activation of the membrane-bound enzyme. D-Thyroxine failed to affect the generation of diacylglycerols in hepatocytes and the activity of protein kinase C.  相似文献   

5.
Yeast cells inhibited by benzimidazole accumulate hypoxanthine with associated efflux of xanthine. Unlike control cells, inhibited cells contain no detectable free UMP and CMP. Benzimidazole decreases uptake of [8-14C]hypoxanthine into the intracellular pool of hypoxanthine and xanthine but causes radioactive xanthine to accumulate in the medium. In inhibited cultures there is a threefold increase in incorporation of [8-14C]hypoxanthine into the total (intracellular plus extracellular) xanthine. Uptake of [8-14C]hypoxanthine into free nucleotides and into bound adenine and guanine was inhibited by 70%. Uptake of [U-14C]glycine into IMP, AMP, GMP, DNA and RNA was also substantially decreased. Incorporation of [2-14C]uracil into the intracellular uracil pool was inhibited by 30% and into free uridine and cytidine by over 90%. Benzimidazole inhibited incorporation of [8-3H]IMP into AMP and GMP, and decreased substantially the activity of glutamine-amidophosphoribosyltransferase (EC 2.4.2.14). Yeast cultures were shown to N-ribotylate benzimidazole. Results are consistent with benzimidazole inhibiting yeast growth by competing for P-rib-PP and so depriving other ribotylation processes such as the 'salvage' pathways and de novo synthesis of purines and pyrimidines.  相似文献   

6.
Chylomicrons labeled with [3H]arachidonic and [14C]linoleic acid were incubated with bovine milk lipoprotein lipase or rat postheparin plasma, containing both lipoprotein lipase and hepatic lipase. During incubation with bovine lipoprotein lipase, [3H]arachidonic acid was released from chylomicron triacylglycerols at a slower rate than [14C]linoleic acid. Only small amounts of [14C]linoleic acid were found as 1,2(2,3)-diacylglycerols, whereas a transient accumulation as [14C]monoacylglycerols was observed. In contrast, significantly more [3H]arachidonic acid was found as 1,2(2,3)-diacylglycerols than as monoacylglycerols at all time intervals investigated. The initial pattern of triacylglycerol hydrolysis by postheparin plasma was similar to that of bovine lipoprotein lipase. However, in contrast to the results obtained with bovine lipoprotein lipase, little [3H]1,2(2,3)-diacylglycerol accumulated. The addition of antiserum to hepatic lipase increased the amount of 3H found in 1,2(2,3)-diacylglycerols and inhibited the formation of free [3H]arachidonic acid. The antiserum also caused a significant inhibition of the hydrolysis of [3H]-but not of [14C]triacylglycerol. With regard to chylomicron phospholipids, the rate of hydrolysis of [14C]linoleoyl phosphatidylcholine with milk lipoprotein lipase was twofold higher than that of the [3H]arachidonyl phosphatidylcholine. However, the hepatic lipase of postheparin plasma had similar activity towards the two phosphatidylcholine species. Postheparin plasma rapidly hydrolyzed chylomicron 3H-labeled and 14C-labeled phosphatidylethanolamine to the same degree, and lipoprotein lipase similarly hydrolyzed 3H-labeled and 14C-labeled phosphatidylethanolamine at approximately equal rates. Antiserum to hepatic lipase inhibited the postheparin plasma hydrolysis of phosphatidylethanolamine and 3H-labeled phosphatidylcholine by about 60%, but the 14C-labeled phosphatidylcholine by only 27%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The effects of glucagon and the alpha-adrenergic agonist, phenylephrine, on the rate of 14CO2 production and gluconeogenesis from [1-14C]lactate and [1-14C]pyruvate were investigated in isolated perfused livers of 24-h-fasted rats. Both glucagon and phenylephrine stimulated the rate of 14CO2 production from [1-14C]lactate but not from [1-14C]pyruvate. Neither glucagon nor phenylephrine affected the activation state of the pyruvate dehydrogenase complex in perfused livers derived from 24-h-fasted rats. 3-Mercaptopicolinate, an inhibitor of the phosphoenolpyruvate carboxykinase reaction, inhibited the rates of 14CO2 production and glucose production from [1-14C]lactate by 50% and 100%, respectively. Furthermore, 3-mercaptopicolinate blocked the glucagon- and phenylephrine-stimulated 14CO2 production from [1-14C]lactate. Additionally, measurements of the specific radioactivity of glucose synthesized from [1-14C]lactate, [1-14C]pyruvate and [2-14C]pyruvate indicated that the 14C-labeled carboxyl groups of oxaloacetate synthesized from 1-14C-labeled precursors were completely randomized and pyruvate----oxaloacetate----pyruvate substrate cycle activity was minimal. The present study also demonstrates that glucagon and phenylephrine stimulation of the rate of 14CO2 production from [1-14C]lactate is a result of increased metabolic flux through the phosphoenolpyruvate carboxykinase reaction, and phenylephrine-stimulated gluconeogenesis from pyruvate is regulated at step(s) between phosphoenolpyruvate and glucose.  相似文献   

8.
Isolated rat kidneys were perfused with a recirculating medium containing exogenous adenosine 3':5'-monophosphate (cyclic AMP) or guanosine 3':5'-monophosphate (cyclic GMP) at an initial concentration of 0.1 mM. Both cyclic nucleotides were rapidly removed from the perfusate. Urinary excretion accounted for about 20% and 40% of the respective cyclic AMP and cyclic GMP lost from the perfusate. The metabolism of the cyclic nucleotides was studied by 14C-labeled cyclic nucleotides in the perfusate. During 60 min, 30% of added cyclic [14C]AMP was metabolized to renal [14C]adenine nucleotides (ATP, ADP, and AMP) and 30% to perfusate [14C]uric acid. Similarly, 20% of cyclic[14C]GMP was metabolized to renal [14C]guanine nucleotides (GTP, GDP, and GMP) and 30% to perfusate [14C]uric acid. Urine contained principally unchanged 14C-labeled cyclic nucleotide. Addition of 0.1 mM cyclic AMP to the perfusate elevated the renal ATP and ADP contents 2-fold. Addition of 0.1 mM of either cyclic AMP or cyclic GMP to the perfusate also elevated the renal production of uric acid 2- to 3-fold. The production and distribution of metabolites of exogenous cyclic nucleotides were also studied in the intact rat. Within 60 min after injection, 3.3 mumol of either 14C-labeled cyclic AMP or cyclic GMP was cleared from the plasma. Kidney cortex and liver were the principal tissues for 14C accumulation. Urinary excretion accounted for about 20 and 45% of the cyclic [14C]AMP and cyclic [14C]GMP lost from the plasma, respectively. The 14C found in the kidney and liver was present almost entirely as the respective purine mono-, di-, and trinucleotides. The other principal metabolite was [14C]allantoin, found in the urine and, to a lesser extent, the liver. The urine contained mostly unchanged 14C-labeled cyclic nucleotide. Unlike the findings with the perfused kidney, [14C]uric acid was not a significant metabolite of the 14C-labeled cyclic nucleotides in these in vivo experiments.  相似文献   

9.
Caffeine (2 mg/mL) inhibited the incorporation of [14C]adenine into actively growing cells of Clostridium perfringens NCTC 8679 in a dose-dependent manner. Also reduced by caffeine was incorporation of [14C]thymidine and 14C-labeled amino acids. No effect on guanine, uracil, adenosine, guanosine, or uridine was detected. Actual incorporation of [14C]caffeine or [14C]thymine in control cultures did not occur.  相似文献   

10.
Untransformed diploid skin fibroblasts from eight normal adults, aged 24 to 74 years, catabolized several 14C-labeled substrates less effectively than cells from ten normal male infants. 14C-labeled substrate metabolism was quantitated either by measuring the evolution of 14CO2 from the 14C-labeled compounds or the incorporation of 14C into cellular protein via transamination of tricarboxylic acid cycle intermediates derived from the 14C-labeled substrates. With these methods, adult cells catabolized [1-14C]butyrate, [1-14C]octanoate, and 1-[2-14C]leucine at rates 44 to 64% of those found in infant cells. The oxidation of [1,4-14C]succinate and [U-14C]malate was identical in both infant and adult cells, while [2,3-14C]succinate catabolism was mildly decreased in adult cells (65-80% of control). These observations parallel those made in rat tissues and confirm that the same phenomenon occurs in cultured human fibroblasts.  相似文献   

11.
Refractile cytoplasmic vesicles are formed in less than 10 h when chick liver cell monolayers are incubated with serum-free medium containing 0.9 mM oleate. These vesicles are identical in microscopic appearance to those formed in monolayers by de novo fatty acid synthesis (Tarlow, D. M., Watkins, P. A., Reed, R. E., Miller, R. S., Zwergel, E. E., and Lane, M. D. (1977) J. Cell Biol. 73, 332-353), but require about one-seventh the incubation time to achieve comparable size. After release from the cells by lysis in hypotonic medium, the vesicles can be isolated by flotation at 27,000 X g. Electron microscopy reveals that the isolated vesicles are rimmed by a membrane. Analysis of vesicles isolated from cells labeled with [14C]oleate or [14C]acetate showed that greater than 95% of their 14C content was in the form of triglyceride and that most cellular [14C]triglyceride was contained in the triglyceride-rich vesicles. Exposure of cells to dibytyryl-cAMP after removal of oleate from the medium caused the disappearance of triglyceride-rich vesicles within 36 h. In the absence of cyclic nucleotide, the vesicles persist. Consistent with this morphological change, dibutyryl-cAMP caused a 5.5-fold activation of the apparent rate of mobilization of cellular [14C]triglyceride from cells previously labeled with [14C]oleate. L-(--)-Carnitine alone had no effect; however, when added with dibutyryl-cAMP, cellular triglyceride mobilization was activated 7.4-fold. Although [14C]triglyceride was the principal 14C-labeled product secreted in the absence of cyclic nucleotide and comprised 90% of the total, [14C]acetoacetate and [14C] beta-hydroxybutyrate became major products when cells were treated with dibutyryl-cAMP. Thus, dibytyryl-cAMP activated ketogenesis from cellular [14C]triglyceride by 200-fold and when added with L-(--)-carnitine, by 400-fold. Cells containing triglyceride-rich vesicles labeled with [2-glyceryl-3H]triglyceride were generated by incubation with medium containing [2-3H]glycerol. A comparison of the rates of loss of cellular [1-oleoyl-14C- and [2-glyceryl-3H]triglyceride revealed that substantial re-esterification, i.e. recycling, of 14C-fatty acid released by lipolysis occurred. Under conditions where recycling of 3H label ws minimal, it was determined that 15% of the cellular [2-glyceryl-3H]triglyceride was secreted "en bloc," i.e. without prior lipolysis. En bloc secretion was not affected by dibutyryl-cAMP. The rate of lipolysis of vesicle-associated [2-glyceryl-3H]triglyceride was increased 2.2-fold in the presence of dibutyryl-cAmP. Chloroquine markedly inhibited the dibutyryl-cAMP-dependent lipolysis suggesting the participation of lysosomes in the mobilization of triglyceride-rich vesicles. Mechanisms are presented which could account for the effects of cAMP and carnitine on the turnover of vesicle triglyceride both at the level of lipolysis and the utilization of the released fatty acids by mitochondria...  相似文献   

12.
Developing forespores were isolated from Bacillus subtilis at different stages of sporulation and protein synthesis in the forespore compartment was examined. Pulse-labeling experiments indicated that [14C]phenylalanine was continuously incorporated into the sporangium throughout sporulation, and at t5 (early stage V of sporulation) 58% of the radioactivity was located in the forespore compartment. Significantly high incorporation of [14C]phenylalanine was observed when the isolated forespores at t5 were incubated with the corresponding mother-cell cytoplasmic fraction or an amino acid mixture. About 73% of the radioactivity incorporated into the isolated forespore at t5 was found in the cytoplasmic fraction and 26% in the membranous fraction. Analysis by sodium dodecyl sulfate-gel electrophoresis showed that the 14C-labeled cytoplasmic protein had a molecular weight of about 20,000, and that a protein having the same molecular weight was present in the t5 forespore as a slight protein band and also in the mature spore as a clear protein band. Gel electrophoresis also revealed that the 14C-labeled membranous-soluble protein (prepared by solubilization with detergents) had broad peaks with molecular weights of about 74,000, 33,000, 20,000, and 12,000.  相似文献   

13.
Leishmania major promastigotes were washed and resuspended in an iso-osmotic buffer. The rate of oxidation of 14C-labeled substrates was then measured as a function of osmolality. An acute decrease in osmolality (achieved by adding H2O to the cell suspension) caused an increase in the rates of 14CO2 production from [6-14C]glucose and, to a lesser extent, from [1,(3)-14C]glycerol. An acute increase in osmolality (achieved by adding NaCl, KCl, or mannitol) strongly inhibited the rates of 14CO2 production from [1-14C]alanine,[1-14C]glutamate, and [1,(3)-14C]glycerol. The rates of 14CO2 formation from [1-14C]laurate,[1-14C]acetate, and [2-14C]glucose (all of which form [1-14C]acetyl CoA prior to oxidation) were also inhibited, but less strongly, by increasing osmolality. These data suggest that with increasing osmolality there is an inhibition of mitochondrial oxidative capacity, which could facilitate the increase in alanine pool size that occurs in response to hyper-osmotic stress. Similarly, an increase in oxidative capacity would help prevent a rebuild up of the alanine pool after its rapid loss to the medium in response to hypo-osmotic stress.  相似文献   

14.
Yeast cells inhibited by benzimidazole accumulate hypoxanthine with an associated efflux of xanthine. Unlike control cells, inhibited cells contain no detectable free UMP and CMP. Benzimidazole decreases uptake of [8-14C]-hypoxanthine into the intracellular pool of hypoxanthine and xanthine but causes radioactive xanthine to accumulate in the medium. In inhibited cultures there is a threefold increase in incorporation of [8-14C]hypoxanthine into the total (intracellular plus extracellular) xanthine. Uptake of [8-14C]hypoxanthine into free nucleotides and into bound adenine and guanine was inhibited by 70%. Uptake of [U-14C]glycine into IMP, AMP, GMP, DNA and RNA was also substantially decreased. Incorporation of [2-14C]uracil into the intracellular uracil pool was inhibited by 30% and into free uridine and cytidine by over 90%. Benzimidazole inhibited incorporation of [8-3H]IMP into AMP and GMP, and decreased substantially the activity of glutamine-amidophosphoribosyltransferase (EC 2.4.2.14). Yeast cultures were shown to N-ribotylate benzimidazole. Results are consistent with benzimidazole inhibiting yeast growth by competing for P-rib-PP and so depriving other ribotylation processes such as the ‘salvage’ pathways and de novo synthesis of purines and pyrimidines.  相似文献   

15.
Metabolic Turnover of Fatty Acids and Acylglycerols in Rat Sciatic Nerve   总被引:3,自引:3,他引:0  
To explain the discrepancy between the low level and high metabolic activity of endoneurial free fatty acids (FFAs) and triacylglycerol (TG), levels of de novo synthesized FFA and acylglycerols were measured in rat sciatic endoneurium at various intervals after endoneurial microinjection of [14C]acetate. Soon after injection (less than 10 min), the [14C]acetate was metabolized to FFA and incorporated into diacylglycerol (DG), TG, sterols, ceramides, and various phospholipids. The proportions of 14C-labeled FFA, DG, TG, and ceramides to total 14C-labeled lipids decreased, whereas those of phospholipids and cerebrosides increased with time after injection. These findings suggest that rapid turnover of FFA and TG may contribute to their low level in sciatic endoneurium. The de novo synthesized fatty acids were largely incorporated into phosphatidylcholine (approximately 50% of total 14C-labeled phospholipids), probably via the cytidine nucleotide pathway using 1,2-DG as a metabolic intermediate. Hydrolysis of [14C]phosphatidylcholine revealed that fatty acids were labeled at both the C-1 (approximately 43%) and C-2 (approximately 57%) positions. On the other hand, a temporal association between decreased amounts of 14C-label in ceramides and increased amounts of 14C-label in sphingomyelin and galactocerebrosides supports the hypothesis that peripheral nerve galactocerebroside is derived, in vivo, from ceramide via acylation of sphingosine. This exclusive labeling of endoneurial lipids by endoneurial microinjection of labeled precursor provides a unique model for studying synthesis and metabolic turnover of membrane lipids in experimental neuropathies.  相似文献   

16.
R Horlacher  R Peist    W Boos 《Applied microbiology》1996,62(10):3861-3863
We report an improvement of a published procedure using Escherichia coli to synthesize 14C-labeled trehalose from [14C]glucose (B. Brand and W. Boos, Appl. Environ. Microbiol. 55:2414-2415, 1989). Instead of inducing the expression of the trehalose-synthesizing enzymes encoded by the chromosomal genes otsAB by high osmolarity, we now induce their expression from a plasmid under normal growth conditions by the addition of IPTG (isopropyl-beta-D-thiogalactopyranoside). Instead of using a pgi zwf double mutant to prevent glucose utilization, we use a pgi::Tn10 insertion only. In addition to being defective in treA, which encodes a periplasmic trehalase, the strain is now also defective in treF, which encodes a newly discovered cytoplasmic trehalase. This strain is genetically stable; it has no growth defects; and after induction with IPTG, it will transform [14C]glucose to [14C]trehalose in minimal medium without any carbon source under aerobic conditions at a rate of 3 nmol/min/10(9) cells. With the improved method, the overall yield of trehalose from glucose is about 80% and the process takes place without dilution of the specific radioactivity of the glucose residues. The accumulated trehalose is extracted from the bacteria by 70% hot ethanol and can easily be purified radiochemically by chromatographic techniques.  相似文献   

17.
The effects of unsaturated fatty acid deprivation on lipid synthesis in Saccharomyces cerevisiae strain GL7 were determined by following the incorporation of [14C]acetate. Compared to yeast cells grown with oleic acid, unsaturated fatty acid-deprived cells contained 200 times as much 14C label in squalene, with correspondingly less label in 2,3-oxidosqualene and 2,3;22,23-dioxidosqualene. Cells deprived of either methionine or cholesterol did not accumulate squalene, demonstrating that the effect of unsaturated fatty acid starvation on squalene oxidation was not due to an inhibition of cell growth. Cells deprived of olefinic supplements displayed additional changes in lipid metabolism: (i) an increase in 14C-labeled diacylglycerides, (ii) a decrease in 14C-labeled triacylglycerides, and (iii) increased levels of 14C-labeled decanoic and dodecanoic fatty acids. The changes in squalene oxidation and acylglyceride metabolism in unsaturated fatty acid-deprived cells were readily reversed by adding oleic acid. Pulse-chase studies demonstrated that the [14C]squalene and 14C-labeled diacylglycerides which accumulated during starvation were further metabolized when cells were resupplemented with oleic acid. These results demonstrate that unsaturated fatty acids are essential for normal lipid metabolism in yeasts.  相似文献   

18.
(1) Incubation of the beef heart mitochondrial ATPase, F1 with Mg-ATP was required for the binding of the natural inhibitor, IF1, to F1 to form the inactive F1-IF1 complex. When F1 was incubated in the presence of [14C]ATP and MgCl2, about 2 mol 14C-labeled adenine nucleotides were found to bind per mol of F1; the bound 14C-labeled nucleotides consisted of [14C]ADP arising from [14C]ATP hydrolysis and [14C]ATP. The 14C- labeled nucleotide binding was not prevented by IF1. These data are in agreement with the idea that the formation of the F1-IF1 complex requires an appropriate conformation of F1. (2) The 14C-labeled adenine nucleotides bound to F1 following preincubation of F1 with Mg-[14C] ATP could be exchanged with added [3H]ADP or [3H]ATP. No exchange occurred between added [3H]ADP or [3H]ATP and the 14 C-labeled adenine nucleotides bound to the F1-IF1 complex. These data suggest that the conformation of F1 in the isolated F1-IF1 complex is further modified in such a way that the bound 14C-labeled nucleotides are no longer available for exchange. (3) 32Pi was able to bind to isolated F1 with a stoichiometry of about 1 mol of Pi per mol of F1 (Penefsky, H.S. (1977) J. Biol. Chem. 252, 2891-2899). There was no binding of 32Pi to the F1-IF1 complex. Thus, not only the nucleotides sites, but also the Pi site, are masked from interaction with external ligands in the isolated F1-IF1 complex.  相似文献   

19.
1. In isolated perfused rat liver maximal rates of 2-[1-14C]oxoglutarate uptake were about 0.4 mumol.g-1 .min-1; half-maximal rates of 2-[14C]oxoglutarate uptake were observed with influent concentrations of about 100 microM. 2-[14C]Oxoglutarate uptake by the liver was not affected by the direction of perfusion, but was decreased by about 80-90% when Na+ in the perfusion fluid was substituted by choline+, suggesting a Na+-dependence of hepatic 2-oxoglutarate uptake. In the absence of added ammonia, [14C]oxoglutarate uptake by the liver was about twice the net oxoglutarate uptake, indicating a simultaneous release of unlabeled oxoglutarate from perfused rat liver. 2. 14C-Labeled metabolites derived from [1-14C]oxoglutarate and recovered in the effluent perfusate were 14CO2 and 14C-labeled glutamate and glutamine; they accounted for 85-100% of the radiolabel taken up by the liver. 14CO2 was the major product (more than 70%) from [1-14C]oxoglutarate taken up the liver, provided glutamine synthesis was either inhibited by methionine sulfoximine or the endogenous rate of glutamine production was below 40 nmol.g-1.min-1. 3. Stimulation of glutamine synthesis by ammonia did not affect [14C]oxoglutarate uptake by the liver, but considerably increased net hepatic oxoglutarate uptake, indicating a decreased release of unlabeled oxoglutarate from the liver. Stepwise stimulation of hepatic glutamine synthesis led to a gradual decrease of 14CO2 production and radiolabel was recovered increasingly as [14C]glutamine in the effluent. At high rates of glutamine formation (i.e. about 0.6 mumol.g-1.min-1), about 60% of the [1-14C]oxoglutarate taken up by the liver was recovered in the effluent as [14C]glutamine. 14CO2 and [14C]glutamine production from added [1-14C]oxoglutarate were dependent on the rate of hepatic glutamine synthesis but not on the direction of perfusion. Extrapolation of 14C incorporation into glutamine to maximal rates of hepatic glutamine synthesis yielded an about 100% utilization of the [14C]oxoglutarate taken up by the liver for glutamine synthesis. This was again true for both the antegrade and the retrograde perfusion directions. On the other hand, addition of ammonia did not affect 14CO2 production from labeled oxoglutarate, when glutamine synthetase was inhibited by methionine sulfoximine. 4. The data suggest that vascular oxoglutarate is almost exclusively taken up by the small perivenous hepatocyte population containing glutamine synthetase, i.e. a cell population comprising only 6-7% of all hepatocytes. Thus, the findings demonstrate the existence of a, to date, uniquely zonally distributed oxoglutarate transport system which is probably Na+-dependent in the plasma membrane.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Contributions of omega-oxidation to overall fatty acid oxidation in slices from livers of ketotic alloxan diabetic rats and of fasted monkeys are estimated. Estimates are made from a comparison of the distribution of 14C in glucose formed by the slices from omega-14C-labeled compared to 2-14C-labeled fatty acids of even numbers of carbon atoms and from [1-14C]acetate compared to [2-14C]acetate. These estimates are based on the fact that 1) the dicarboxylic acid formed via omega-oxidation of a omega-14C-labeled fatty acid will yield [1-14C]acetate and [1-14C]succinate on subsequent beta-oxidation, if beta-oxidation is assumed to proceed to completion; 2) only [2-14C]acetate will be formed if the fatty acid is metabolized solely via beta-oxidation; and 3) 14C from [1-14C]acetate and [1-14C]succinate is incorporated into carbons 3 and 4 of glucose and 14C from [2-14C]acetate is incorporated into all six carbons of glucose. From the distributions found, the contribution of omega-oxidation to the initial oxidation of palmitate by liver slices is estimated to between 8% and 11%, and the oxidation of laurate between 17% and 21%. Distributions of 14C in glucose formed from 14C-labeled palmitate infused into fasted and diabetic rats do not permit quantitative estimation of the contribution of omega-oxidation to fatty acid oxidation in vivo. However, the distributions found also indicate that, of the fatty acid metabolized by the whole animal in the environment of glucose formation, at most, only a minor portion is initially oxidized via omega-oxidation. As such, omega-oxidation cannot contribute more than a small extent to the formation of glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号