首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alkalophilic Bacillus alpha-amylase (ABA) was produced in the yeast Pichia pastoris with a yield of 50 mg L(-1) of culture supernatant. The recombinant protein, rABA, was glycosylated at seven of the nine sites for potential N-glycosylation as identified by automated peptide sequencing and MALDI-TOF MS of tryptic fragments. The number of hexose units within each glycan chain was found to vary from 8 to 18 as calculated from the masses of glycosylated peptide fragments. Temperature stability measurements in the absence of substrate showed that the T(50) of glycosylated rABA and its endoglycosidase H-deglycosylated form was 76 degrees C while that of ABA purified from Bacillus was 89 degrees C thus demonstrating that the original temperature stability of ABA was not retained by rABA. The relative thermoperformance, i.e., the activity at 80 degrees C relative to that at 37 degrees C was 0.9 +/- 0.3 for rABA. Removal of all seven N-linked glycans by endoglycosidase H increased the relative thermoperformance to 2.4 +/- 0.6, compared to the value of 3.5 +/- 1.1 for ABA. Thus, removal of the N-linked glycans did not improve the thermostability of rABA but modified its thermoperformance to approach that of the original Bacillus enzyme. rABA had the highest activity around pH 6. Treatment of rABA with endoglycosidase H shifted the pH activity profile in a more alkaline direction approaching the pH activity profile of ABA.  相似文献   

2.
A novel cellobiase (Cba2) was purified from the culture supernatant of Cellulomonas biazotea and characterized. Cba2 appeared to be a major secretory cellobiase in C. biazotea as its enzymatic activity was estimated to represent over 40% of the total extracellular beta-glucosidase activity. The enzyme was purified over 260-fold subsequent to ammonium sulfate precipitation, gel-filtration chromatography, anion-exchange chromatography, and reversed-phase high-performance liquid chromatography. Cba2 was shown by SDS-PAGE to have a large molecular mass of 109 kDa, which makes it one of the largest secretory cellobiases characterized. Its homogeneity was confirmed by N-terminal amino acid sequencing. The K(m) and V(max) values were 0.025 mM and 0.0048 mM min(-1), respectively, for the Cba2 hydrolysis of p-nitrophenyl-beta-d-glucopyranoside, and 0.73 mM and 0.00033 mM min(-1), respectively, for the hydrolysis of cellobiose (at 37 degrees C and pH 7.0). The purified enzyme has a pH optimum of 4.8 and the optimum temperature for activity is 70 degrees C. In view of the secretory nature of Cba2 and the fact that it is a major component of secretory cellobiases of C. biazotea, it is potentially important in the enzymatic degradation of cellulose, and its availability as a recombinant protein may facilitate the studies of its biotechnological applications.  相似文献   

3.
The mature peptide of Aspergillus niger xylanase A (AnxA) was successfully expressed in Pichia pastoris at high levels under the control of AOX1 promoter. The recombinant AnxA (reAnxA) was secreted into culture medium. After 96-h 0.25% methanol induction, the activity of reAnxA in the culture supernatant reached the peak, 175 U/mg, which was 1.9 times as high as that of the native AnxA (92 U/mg). Studies on enzymatic properties showed that the optimum temperature and optimum pH of reAnxA were 50 degrees C and 5.0, respectively. The reAnxA was very stable in a wide pH range of 3.0-8.0. After incubation at the pH 3.0-8.0, 25 degrees C for 1h, all the residual activities of reAnxA were over 80%. The K(m) and k(cat) values for reAnxA were 4.8 mg/ml and 123.2s(-1), respectively. HPLC analysis showed that xylotriose was the main hydrolysis product of birchwood xylan and bran insoluble xylan by reAnxA.  相似文献   

4.
To utilize glucoamylase-displaying yeast cells for enzymatic desizing of starched cotton cloth, we constructed yeast strains that codisplayed Rhizopus oryzae glucoamylase and two kinds of Trichoderma reesei cellulose-binding domains (CBD1, CBD of cellobiohydrolase I (CBHI); and CBD2, CBD of cellobiohydrolase II (CBHII)). In this study, we aimed to obtain a high efficiency of enzymatic desizing of starched cotton cloth. Yeast cells that codisplayed glucoamylase and CBD had higher activity on starched cotton cloth than yeast cells that displayed only glucoamylase. Glucoamylase and double CBDs (CBD1 and CBD2) codisplaying yeast cells exhibited the highest activity ratio (4.36-fold), and glucoamylase and single CBD (CBD1 or CBD2) codisplaying yeast cells had higher relative activity ratios (2.78- and 2.99-fold, respectively) than glucoamylase single-displaying cells. These results indicate that the glucoamylase activity of glucoamylase-displaying cells would be affected by the binding ability of CBD codisplayed on the cell surface to starched cotton cloth. These novel strains might play useful roles in the enzymatic desizing of starched cotton cloth in the textile industry.  相似文献   

5.
The biosynthesis of glucuronosyl diacylglycerol from UDP-glucuronate and diacylglycerol is catalyzed by an enzyme found in both the 34,800 X g supernatant and particulate preparations from disrupted Pseudomonas diminuta (ATCC 11586). UDP-glucuronate served as the glucuronosyl donor and could not be replaced by glucuronic acid, glucuronate-1-phosphate, and a number of nucleotide-linked sugars. The maximum velocity was estimated to be 19 nmol of glucuronosyl diacylglycerol synthesized/h/mg of protein in the presence of the 34,800 X g particulate enzyme and 63 nmol/h/mg of protein with the 34,800 X g supernatant preparation. The apparent Km for UDP-glucuronate was 4.2 micronM for supernatant and 4.4 to 6.0 micronM for particulate preparations. The biosynthesis of glucuronosyl diacylglycerol in vitro, was strongly dependent upon exogenous diacylglycerols containing unsaturated and shorter chain fatty acids. The enzymatic activity was very heat-labile and lost about 80% of the initial rate of synthesis after preincubation for 5 min at 37 degrees. The reaction was stimulated by 14.7 mM Triton X-100 and had an optimal pH of 7.1 and an ionic strength of 0.2 M. Divalent cations were not required.  相似文献   

6.
K Thudt  K H Schleifer  F G?tz 《Gene》1985,37(1-3):163-169
The plasmid-coded alpha-amylase gene of Bacillus stearothermophilus (amy) was cloned in Staphylococcus carnosus using plasmid pCA43 as a vector. The amy gene was located on a 5.4-kb HindIII DNA fragment of the hybrid plasmid pamy7. When transformed into other staphylococcal species, plasmid pamy7 exhibited marked differences in the production of alpha-amylase (alpha Amy). Most active for heterospecific alpha Amy production was Staphylococcus aureus. In its culture supernatant nearly half as much alpha Amy activity was found as for the donor strain B. stearothermophilus. All staphylococcal species were able to secrete alpha Amy, since more than 80% of the enzyme activity was found in the culture supernatant. The extracellular alpha Amy of S. aureus [pamy7] was purified to homogeneity. The enzyme exhibited an Mr of approx. 58 000, an optimum activity at pH 5.3-6.3 and at 65 degrees C. Although the enzyme was stable at 65 degrees C for at least 3 h, its thermostability was not unusual. The enzymatic properties of the alpha Amy from S. aureus were similar to those previously reported for various B. stearothermophilus strains.  相似文献   

7.
Abstract

Enzymes are indispensable biocatalysts required in various steps of textile processing to minimize various chemical-induced hazards. The present work focuses on the applications of the truncated α-amylase in textile industry for desizing of fabrics by starch hydrolysis. The multiple sequence alignment was performed to find homology and the possible truncation region in Bacillus subtilis MTCC 121 α-amylase with same bacilli family α-amylase. Two constructs were generated for α-amylase gene of Bacillus subtilis MTCC 121 (Amy_F, full-length and Amy_T, C-terminal truncated) were cloned, overexpressed, purified, and characterized. Results revealed that activity of Amy_T was found to be 2.87-fold better than Amy_F. Further, the optimum temperature of Amy_F and Amy_T was obtained at 45?°C and 55?°C, respectively, whereas optimum pH was recorded at pH 7 and pH 8, respectively. Improved thermostability of Amy_T was further confirmed through thermal shift assay. Subsequently, starch-coated fabrics were tested for starch removal using the α-amylases. Comparative analysis revealed that Amy_T performed better in starch removal from polystyrene (85%), silk (75%), and cotton (70%) fabrics. The removal of starch from the fabrics was further confirmed by FESEM. Conclusively, this work presents one truncated α-amylase as an improved candidate over its full-length counterpart for textile desizing.  相似文献   

8.
Two proteases (P1 and P2) and a chitinase (C1) were purified from the culture supernatant of Serratia ureilytica TKU013 with squid pen as the sole carbon/nitrogen source. The molecular masses of P1, P2 and C1 determined by SDS-PAGE were approximately 50 kDa, 50 kDa and 60 kDa, respectively. The optimum pH, optimum temperature, pH stability, and thermal stability of P1, P2 and C1 were (pH 10, 40 degrees C, pH 7-11, and <50 degrees C), (pH 10, 40 degrees C, pH 8-11, and <40 degrees C) and (pH 6, 50 degrees C, pH 5-8, and <50 degrees C), respectively. P1 and P2 were inhibited by Mg(2+), EDTA and C1 was inhibited completely by Cu(2+). The antioxidant activity of TKU013 culture supernatant was 72% per mL (DPPH scavenging ability). With this method, we have shown that squid pen wastes can be utilized and have revealed its hidden potential in the production of functional foods.  相似文献   

9.
We have previously demonstrated that Chinese hamster ovary (CHO) cell lysates harbor sialidase, beta-galactosidase, beta-hexosaminidase, and fucosidase activities that can accumulate extracellularly in CHO cell culture, thereby potentially leading to extracellular modification of glycoprotein oligosaccharides. The sialidase activity in CHO cell lysates was surprisingly active and stable at pH 7.5, with a half-life of 57 h at 37 degrees C.We have extended this work to determine whether 293, NS0, or hybridoma cell lysates contain similar glycosidase activities. The pH-activity profiles of beta-galactosidase and beta-hexosaminidase in lysates of these three cell lines resemble the pH-activity profiles for these enzymes in CHO cell lysate, whereas the pH-activity profiles of sialidase and fucosidase appear to be cell-type dependent. Sialidase activities were relatively stable at pH 4.5 in 293, NS0, and hybridoma cell lysates. However, the activities in 293 and NS0 cell lysates were unstable at pH 7.5, with no activity remaining after a 2-h incubation at 37 degrees C. The sialidase activity in hybridoma cell lysate was moderately stable at pH 7.5 with 30% of the activity remaining after a 2-h incubation at 37 degrees C. We conclude that the sialidase activites from 293, NS0, and hybridoma cells have characteristics similar to the vast majority of reported mammalian sialidase activities, and that these activities are markedly differant from the CHO cell sialidase activity.Finally, sialidase, beta-galactosidase, beta-hexosaminidase, and fucosidase activities were measured at pH 7 in cell-free bioreactor supernatants of the hybridoma cell line. As previously observed in CHO cell culture, all four glycosidase activities were present in the hybridoma supernatants. However, the sialidase activity in hybridoma supernatant was an order of magnitude lower than in CHO cell culture supernatant despite the fact that the hybridoma cell lysis rate was an order of magnitude higher. (c) 1994 John Wiley & Sons, Inc.  相似文献   

10.
Thyroxine 5'-deiodinase activity was studied in male rat Harderian gland homogenates. The reaction rate was proportional to the tissue content in the homogenate and dependent on pH, with an optimum pH of 7.0, and temperature, between 4-37 degrees C. 5'-deiodinase activity was increased by dithiothreitol (DTT) in a dose-dependent manner, and inhibited moderately by propylthiouracil (PTU) and strongly by iopanoic acid (IA). Thyroidectomy enhanced the enzymatic activity (30-fold above the control value) but this increase is totally prevented by the in vivo iopanoic acid treatment. Thyroxine 5'-deiodinase activity was also dependent on T4 concentration (Km = 3.3 nM; Vmax = 10 fmol 125I-released/mg protein/h) and exhibited a nyctohemeral rhythmicity with a maximal activity at 03.00 h (4-fold above basal values) and minimal activity between 12.00-21.00 h.  相似文献   

11.
A raw starch utilizing microbe was isolated from mud in a milling factory. The 16S ribosomal DNA (rDNA) sequencing and morphological properties of the strain indicated that it belongs to the genus Streptomyces. A strongly raw starch digesting amylase was purified from the culture supernatant of the strain by chromatographic procedures. The specific activity of the enzyme was 11.7 U/mg, molecular mass 47 kDa, optimum pH 6.0, and optimum temperature 50 to 60 degrees C. The enzyme showed sufficient activity even at 70 degrees C. It was activated by calcium, cobaltous, and magnesium ions, and inhibited by copper, nickel, zinc, and ferrous ions. It formed maltose mainly from raw and gelatinized starch, and glycogen. No products were formed from glucose, maltose, maltotriose, pullulan, or cyclodextrins (CDs). The enzyme digested raw wheat, rice, and waxy rice starch rapidly, and raw corn, waxy corn, sweet potato, tapioca, and potato starch normally.  相似文献   

12.
A highly thermostable alkaline amylase producing Bacillus sp. PN5 was isolated from soil, which yielded 65.23 U mL(-1) of amylase in medium containing (%) 0.6 starch, 0.5 peptone and 0.3 yeast extract at 60 degrees C, pH 7.0 after 60 h of incubation. Maximum amylase activity was at pH 10.0 and 90 degrees C. The enzyme retained 80% activity after 1 h at pH 10.0. It exhibited 65% activity at 105 degrees C and had 100% stability in the temperature range between 80 and 100 degrees C for 1 h. In addition, there was 86.36% stability after 1-h incubation with sodium dodecylsulphate. These properties indicated possible use of this amylase in starch saccharification and detergent formulation.  相似文献   

13.
Wheat straw used in this study contained 44.24 +/- 0.28% cellulose and 25.23 +/- 0.11% hemicellulose. Alkaline H(2)O(2) pretreatment and enzymatic saccharification were evaluated for conversion of wheat straw cellulose and hemicellulose to fermentable sugars. The maximum yield of monomeric sugars from wheat straw (8.6%, w/v) by alkaline peroxide pretreatment (2.15% H(2)O(2), v/v; pH 11.5; 35 degrees C; 24 h) and enzymatic saccharification (45 degrees C, pH 5.0, 120 h) by three commercial enzyme preparations (cellulase, beta-glucosidase, and xylanase) using 0.16 mL of each enzyme preparation per g of straw was 672 +/- 4 mg/g (96.7% yield). During the pretreatment, no measurable quantities of furfural and hydroxymethyl furfural were produced. The concentration of ethanol (per L) from alkaline peroxide pretreated enzyme saccharified wheat straw (66.0 g) hydrolyzate by recombinant Escherichia coli strain FBR5 at pH 6.5 and 37 degrees C in 48 h was 18.9 +/- 0.9 g with a yield of 0.46 g per g of available sugars (0.29 g/g straw). The ethanol concentration (per L) was 15.1 +/- 0.1 g with a yield of 0.23 g/g of straw in the case of simultaneous saccharification and fermentation by the E. coli strain at pH 6.0 and 37 degrees C in 48 h.  相似文献   

14.
Fungi were screened for their ability to produce alpha-amylase by a plate culture method. Penicillium chrysogenum showed high enzymatic activity. Alpha-amylase production by P. chrysogenum cultivated in liquid media containing maltose (2%) reached its maximum at 6-8 days, at 30 degrees C, with a level of 155 U ml(-1). Some general properties of the enzyme were investigated. The optimum reaction pH and temperature were 5.0 and 30-40 degrees C, respectively. The enzyme was stable at a pH range from 5.0-6.0 and at 30 degrees C for 20 min and the enzyme's 92.1% activity's was retained at 40 degrees C for 20 min without substrate. Hydrolysis products of the enzyme were maltose, unidefined oligosaccharides, and a trace amount of glucose. Alpha-amylase of P. chrysogenum hydrolysed starches from different sources. The best hydrolysis was determined (98.69%) in soluble starch for 15 minute at 30 degrees C.  相似文献   

15.
The maximal enzymatic activity of crude amylase produced in the batch culture of Clostridium beijerinckii strain AM21B grown in PY medium with starch was obtained at 55°C and in an acidic pH range of 4.6 to 5.4. Amylase was produced in the culture medium after 4 h (46.6 units) and reached a peak (405.5 units) after 12 h cultivation at 36°C, pH 6.0. Although the most efficient production of amylase, hydrogen and cells was achieved at 36°C and pH 6.0, the maximal hydrogen evolution rate was found at 41°C and pH 7.0.  相似文献   

16.
About 34% of the strains of Yersinia enterocolitica isolated from raw milk were found to produce lecithinase. A selected strain produced phospholipase C at 22 degrees C and 37 degrees C; production was optimum at 37 degrees C in the stationary phase (14-16 h). A decrease in phospholipase C activity at various storage temperatures (-5 degrees C, 4 degrees C, 37 degrees C) was also observed, although the enzyme was active over a wide range of temperature (5-65 degrees C) and pH (3.5-7.5). The phospholipase C was partially purified by ammonium sulphate precipitation and Sephadex column chromatography, and characterized.  相似文献   

17.
A thermostable alkaline alpha-amylase producing Bacillus sp. A3-15 was isolated from compost samples. There was a slight variation in amylase synthesis within the pH range 6.0 and 12.0 with an optimum pH of 8.5 (8mm zone diameter in agar medium) on starch agar medium. Analyses of the enzyme for molecular mass and amylolytic activity were carried out by starch SDS-PAGE electrophoresis, which revealed two independent bands (86,000 and 60,500 Da). Enzyme synthesis occurred at temperatures between 25 and 65 degrees C with an optimum of 60 degrees C on petri dishes. The partial purification enzyme showed optimum activity at pH 11.0 and 70 degrees C. The enzyme was highly active (95%) in alkaline range of pH (10.0-11.5), and it was almost completely active up to 100 degrees C with 96% of the original activity remaining after heat treatment at 100 degrees C for 30 min. Enzyme activity was enhanced in the presence of 5mM CaCl2 (130%) and inhibition with 5mM by ZnCl2, NaCl, Na-sulphide, EDTA, PMSF (3mM), Urea (8M) and SDS (1%) was obtained 18%, 20%, 36%, 5%, 10%, 80% and 18%, respectively. The enzyme was stable approximately 70% at pH 10.0-11.0 and 60 degrees C for 24h. So our result showed that the enzyme was both, highly thermostable-alkaline, thermophile and chelator resistant. The A3-15 amylase enzyme may be suitable in liquefaction of starch in high temperature, in detergent and textile industries and in other industrial applications.  相似文献   

18.
Although retroviruses are a promising tool for gene therapy, there are two major problems limiting the establishment of viable industrial processes: retrovirus stability and low final yield in the supernatant. This fact emphasizes the need for an effective process optimization, not only at a genetic level but also at a bioprocess engineering level. In part 1 of this paper a mathematical model was developed to optimize the bioreaction yield by determining the best retrovirus harvest strategy in perfusion cultures. PA317 cells producing recombinant retroviruses were used to develop and test this model. Cell culture was performed in stirred tanks using porous supports. The parameters of the proposed model were experimentally determined for batch and perfusion cultures at 32 and 37 degrees C both with and without additives to enhance production; the model was then validated. This model allowed the determination of the optimal values of all operational variables included: batch and perfusion duration and perfusion rate. The highest productivity (2682 virus cm(-)(3) h(-)(1)) was obtained under the following conditions: batch at 37 degrees C for 53 h followed by perfusion at 32 degrees C for 23 h with a perfusion rate of 0.107 h(-)(1). This value was 3.5-fold higher than the best result obtained in batch cultures for the same conditions of titer and quality. A sensitivity analysis of the parameters showed that the parameters that affect most the final productivity depend on the bioreaction phase: cell growth in batch culture and production and product degradation in perfusion culture. In part 2 of this paper, this model is extended to the first step of downstream processing, and the addition of further steps to the process is discussed in order to achieve global process optimization.  相似文献   

19.
Bacillus sp. RK-1 was isolated as a bacterium that produced maltose phosphorylase (MPase) in the culture supernatant. Screening was done from among about 400 isolates that could grow at 55 degrees C in a medium containing maltose as the sole carbon source. The enzyme was purified to an electrophoretically homogeneous state and some properties were investigated. The Mr of the enzyme was estimated to be 170 kDa by gel filtration and 88.5 kDa by SDS-PAGE, suggesting that it consisted of two identical subunits. The enzyme showed optimum activity around pH 6.0-7.0 and the optimum temperature was about 65 degrees C. The enzyme was stable in the range of pH 5.5-8.0 after keeping it at 4 degrees C for 24 h and retained the activity up to about 55 degrees C after keeping it for 15 min. This is the first report about an MPase that could be produced in the culture supernatant. Furthermore, these investigations showed that this MPase is one of the most thermostable ones reported so far.  相似文献   

20.
The inhibitory capacity of mastocytoma cell line P815 and its cultural supernatant (CS) was studied in the reaction of blast transformation (RBT) and mixed lymphocyte culture (MLC). An addition of both P815 cells and CS resulted in dose-dependent inhibition of lymphocyte proliferation in RBT and MLC. The treatment of DBA/2 spleen cells with CS for 2 h at 37 degrees C resulted in a significant decrease in proliferative activity and induction of supressor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号