首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amphiphilic macromolecules, known as amphipols, have emerged as promising candidates to replace conventional detergents for handling integral membrane proteins in water due to the enhanced stability of protein/amphipol complexes as compared to protein/detergent complexes. The limited portfolio of amphipols currently available prompted us to develop amphipols bearing phosphorylcholine-based units (PC). Unlike carboxylated polymers, PC-amphipols remain soluble in aqueous media under conditions of low pH, high salt concentration, or in the presence of divalent ions. The solubilizing properties of four PC-amphipols were assessed in the case of two membrane proteins, cytochrome b(6)f and bacteriorhodopsin. The protein/PC-amphipol complexes had a low dispersity in size, as determined by rate zonal ultracentrifugation. Short PC-amphipols ( approximately 22 kDa) of low dispersity in length, containing approximately 30 mol% octyl side groups, approximately 35 mol% PC-groups, and approximately 35 mol% isopropyl side groups, appeared best suited to form stable complexes, preserving the native state of BR over periods of several days. BR/PC-amphipol complexes remained soluble in aqueous media at pH> or =5, as well as in the presence of 1 M NaCl or 12 mM calcium ions. Results from isothermal titration calorimetry indicated that the energetics of the conversion of BR/detergent complexes into BR/amphipol complexes are similar for PC-amphipols and carboxylated amphiphols.  相似文献   

2.
Nagy JK  Lonzer WL  Sanders CR 《Biochemistry》2001,40(30):8971-8980
Despite the relevance of membrane protein misfolding to a number of common diseases, our understanding of the folding and misfolding of membrane proteins lags well behind soluble proteins. Here, the overall kinetics of membrane insertion and folding of the homotrimeric integral membrane protein diacylglycerol kinase (DAGK) is addressed. DAGK was purified into lipid/detergent-free urea and guanidinium solutions and subjected to general structural characterization. In urea, the enzyme was observed to be monomeric but maintained considerable tertiary structure. In guanidinium, it was also monomeric but exhibited much less tertiary structure. Aliquots of these DAGK stock solutions were diluted 200-fold into lipid vesicles or into detergent/lipid mixed micelles, and the rates and efficiencies of folding/insertion were monitored. Reactions were also carried out in which micellar DAGK solutions were diluted into vesicular solutions. Productive insertion of DAGK from denaturant solutions into mixed micelles occurred much more rapidly than into lipid vesicles, suggesting that bilayer transversal represents the rate-limiting step for DAGK assembly in vesicles. The efficiency of productive folding/insertion into vesicles was highest in reactions initiated with micellar DAGK stock solutions (where DAGK maintains a nativelike fold and oligomeric state) and lowest in reactions starting with guanidinium stocks (where DAGK is an unfolded monomer). Moreover, the final ratio of irreversibly misfolded DAGK to reversibly misfolded enzyme was highest following reactions initiated with guanidinium stock solutions and lowest when micellar stocks were used. Finally, it was also observed that very low concentrations of detergents were able to both enhance the bilayer insertion rate and suppress misfolding.  相似文献   

3.
Amphipathic polymers called amphipols provide a valuable alternative to detergents for keeping integral membrane proteins soluble in aqueous buffers. Here, we characterize spatial contacts of amphipol A8-35 with membrane proteins from two architectural classes: The 8-stranded β-barrel outer membrane protein OmpX and the α-helical protein bacteriorhodopsin. OmpX is well structured in A8-35, with its barrel adopting a fold closely similar to that in dihexanoylphosphocholine micelles. The accessibility of A8-35-trapped OmpX by a water-soluble paramagnetic molecule is highly similar to that in detergent micelles and resembles the accessibility in the natural membrane. For the α-helical protein bacteriorhodopsin, previously shown to keep its fold and function in amphipols, NMR data show that the imidazole protons of a polyhistidine tag at the N-terminus of the protein are exchange protected in the presence of detergent and lipid bilayer nanodiscs, but not in amphipols, indicating the absence of an interaction in the latter case. Overall, A8-35 exhibits protein interaction properties somewhat different from detergents and lipid bilayer nanodiscs, while maintaining the structure of solubilized integral membrane proteins.  相似文献   

4.
Bicelles are bilayered discoidal lipid-detergent assemblies which are useful as model membranes. To date, there has been no direct demonstration of functional viability for an integral membrane protein reconstituted into bicelles. In this contribution, the catalytic activity of diacylglycerol kinase (DAGK) was measured following reconstitution into several different bicelle systems and compared to activities measured in traditional mixed micelles and vesicles. For the most optimal bicelle systems tested, DAGK activities approached those observed in mixed micelles or vesicles. For some other bicellar mixtures tested, activities were much lower, with steady-state kinetic data indicating reduced V(max) rather than perturbations in substrate K(m). Catalytically, DAGK showed a strong preference for bicelles containing 3-(cholamidopropyl)dimethylammonio-2-hydroxy-1-propanesulfonate (CHAPSO) as the detergentcomponent relative to short-chained phosphatidylcholine.DAGK also exhibited a preference for dimyristoylphosphatidylcholine or dipalmitoylphosphatidylcholine bicelles relative to those of dilauroylphosphatidylcholine.  相似文献   

5.
Nutrient import across Gram-negative bacteria’s outer membrane is powered by the proton-motive force, delivered by the cytoplasmic membrane protein complex ExbB–ExbD–TonB. Having purified the ExbB4–ExbD2 complex in the detergent dodecyl maltoside, we substituted amphipol A8-35 for detergent, forming a water-soluble membrane protein/amphipol complex. Properties of the ExbB4–ExbD2 complex in detergent or in amphipols were compared by gel electrophoresis, size exclusion chromatography, asymmetric flow field-flow fractionation, thermal stability assays, and electron microscopy. Bound detergent and fluorescently labeled amphipol were assayed quantitatively by 1D NMR and analytical ultracentrifugation, respectively. The structural arrangement of ExbB4–ExbD2 was examined by EM, small-angle X-ray scattering, and small-angle neutron scattering using a deuterated amphipol. The amphipol-trapped ExbB4–ExbD2 complex is slightly larger than its detergent-solubilized counterpart. We also investigated a different oligomeric form of the two proteins, ExbB6–ExbD4, and propose a structural arrangement of its transmembrane α-helical domains.  相似文献   

6.
Amphipathic polymers known as “amphipols” provide a highly stabilizing environment for handling membrane proteins in aqueous solutions. A8-35, an amphipol with a polyacrylate backbone and hydrophobic grafts, has been extensively characterized and widely employed for structural and functional studies of membrane proteins using biochemical and biophysical approaches. Given the sensitivity of membrane proteins to their environment, it is important to examine what effects amphipols may have on the structure and dynamics of the proteins they complex. Here we present the first molecular dynamics study of an amphipol-stabilized membrane protein, using Escherichia coli OmpX as a model. We begin by describing the structure of the complexes formed by supplementing OmpX with increasing amounts of A8-35, in order to determine how the amphipol interacts with the transmembrane and extramembrane surfaces of the protein. We then compare the dynamics of the protein in either A8-35, a detergent, or a lipid bilayer. We find that protein dynamics on all accessible length scales is restrained by A8-35, which provides a basis to understanding some of the stabilizing and functional effects of amphipols that have been experimentally observed.  相似文献   

7.
Amphiphilic macromolecules, known as amphipols, have emerged as promising candidates to replace conventional detergents for handling integral membrane proteins in water due to the enhanced stability of protein/amphipol complexes as compared to protein/detergent complexes. The limited portfolio of amphipols currently available prompted us to develop amphipols bearing phosphorylcholine-based units (PC). Unlike carboxylated polymers, PC-amphipols remain soluble in aqueous media under conditions of low pH, high salt concentration, or in the presence of divalent ions. The solubilizing properties of four PC-amphipols were assessed in the case of two membrane proteins, cytochrome b6f and bacteriorhodopsin. The protein/PC-amphipol complexes had a low dispersity in size, as determined by rate zonal ultracentrifugation. Short PC-amphipols (<M>≈ 22 kDa) of low dispersity in length, containing ∼ 30 mol% octyl side groups, ∼ 35 mol% PC-groups, and ∼ 35 mol% isopropyl side groups, appeared best suited to form stable complexes, preserving the native state of BR over periods of several days. BR/PC-amphipol complexes remained soluble in aqueous media at pH ≥ 5, as well as in the presence of 1 M NaCl or 12 mM calcium ions. Results from isothermal titration calorimetry indicated that the energetics of the conversion of BR/detergent complexes into BR/amphipol complexes are similar for PC-amphipols and carboxylated amphiphols.  相似文献   

8.
While the formation of kinetically trapped misfolded structural states by membrane proteins is related to a number of diseases, relatively few studies of misfolded membrane proteins in their purified state have been carried out and few methods for refolding such proteins have been reported. In this paper, misfolding of the trimeric integral membrane protein diacylglycerol kinase (DAGK) is documented and a method for refolding the protein is presented; 65 single-cysteine mutants of DAGK were examined. A majority were found to have lower-than-expected activities when purified into micellar solutions, with additional losses in activity often being observed following membrane reconstitution. A variety of evidence indicates that the low activities observed for most of these mutants results from kinetically based misfolding of the protein, with misfolding often being manifested by the formation of aberrant oligomeric states. A method referred to as "reconstitutive refolding" for correcting misfolded DAGK is presented. This method is based upon reconstituting DAGK into multilamellar POPC vesicles by dialyzing the detergent dodecylphosphocholine out of mixed micellar mixtures. For 55 of the 65 mutants tested, there was a gain of DAGK activity during reconstitutive refolding. In 33 of these cases, the gain in activity was greater than 2-fold. The refolding results for cysteine replacement mutants at DAGK sites known to be highly conserved provide teleological insight into whether sites are conserved, because they are critical for catalysis, for maintenance of the proper folding pathway, or for some other reason.  相似文献   

9.
Solution-state nuclear magnetic resonance studies of membrane proteins are facilitated by the increased stability that trapping with amphipols confers to most of them as compared to detergent solutions. They have yielded information on the state of folding of the proteins, their areas of contact with the polymer, their dynamics, water accessibility, and the structure of protein-bound ligands. They benefit from the diversification of amphipol chemical structures and the availability of deuterated amphipols. The advantages and constraints of working with amphipols are discussed and compared to those associated with other non-conventional environments, such as bicelles and nanodiscs.  相似文献   

10.
Translational diffusion coefficients and catalytic activities were measured for the integral membrane protein diacylglycerol kinase (DAGK) in a variety of types of detergent micelles. Despite the structural diversity of the detergents examined, the translational diffusion coefficients observed for DAGK spanned a fairly limited range of values: 2.7 to 4.7 (× 10-7cm2/s). No general correlation was observed between the diffusion coefficients for the detergent-DAGK aggregates and the sizes of the corresponding protein-free micelles. These results indicate that the effective molecular weights of the DAGK-detergent aggregates were determined more by the structural properties of the protein than by the properties of the detergents. The catalytic activity of DAGK in detergents having medium-length alkyl chains such as dodecylphosphocholine or decylmaltoside was usually observed to be substantially higher than in short-chain detergents such as octylphosphocholine or octylglucoside. Taken together, the diffusion and activity results indicate that medium-chain detergents are generally preferred for use in NMR studies of complex membrane proteins because they are no worse than short-chained detergents in terms of increasing the effective molecular weight of the protein of interest while they are considerably better at maintaining native-like protein conformation. Among the 10 detergents examined, only sodium dodecylsulfate was observed to be unable to support DAGK activity under any conditions examined, suggesting that this well-known protein denaturant should be used with care in studies of complex membrane proteins.  相似文献   

11.
Nonionic amphipols (NAPols) synthesized by homotelomerization of an amphiphatic monomer are able to keep membrane proteins (MPs) stable and functional in the absence of detergent. Some of their biochemical and biophysical properties and applications have been examined, with particular attention being paid to their complementarity with the classical polyacrylate-based amphipol A8-35. Bacteriorhodopsin (BR) from Halobacterium salinarum and the cytochrome b(6)f complex from Chlamydomonas reinhardtii were found to be in their native state and highly stable following complexation with NAPols. NAPol-trapped BR was shown to undergo its complete photocycle. Because of the pH insensitivity of NAPols, solution nuclear magnetic resonance (NMR) two-dimensional (1)H-(15)N heteronuclear single-quantum coherence spectra of NAPol-trapped outer MP X from Escherichia coli (OmpX) could be recorded at pH 6.8. They present a resolution similar to that of the spectra of OmpX/A8-35 complexes recorded at pH 8.0 and give access to signals from solvent-exposed rapidy exchanging amide protons. Like A8-35, NAPols can be used to fold MPs to their native state as demonstrated here with BR and with the ghrelin G protein-coupled receptor GHS-R1a, thus extending the range of accessible folding conditions. Following NAPol-assisted folding, GHS-R1a bound four of its specific ligands, recruited arrestin-2, and activated binding of GTPγS by the G(αq) protein. Finally, cell-free synthesis of MPs, which is inhibited by A8-35 and sulfonated amphipols, was found to be very efficient in the presence of NAPols. These results open broad new perspectives on the use of amphipols for MP studies.  相似文献   

12.
Nagy JK  Lau FW  Bowie JU  Sanders CR 《Biochemistry》2000,39(14):4154-4164
This work represents the first stage of thiol-based cross-linking studies to map the oligomeric interface of the homotrimeric membrane protein diacylglycerol kinase (DAGK). A total of 53 single-cysteine mutants spanning DAGK's three transmembrane segments and the first part of a cytoplasmic domain were purified and subjected to catalytic oxidation in mixed micelles. Four mutants (A52C, I53C, A74C, and I75C) were observed to undergo intratrimer disulfide bond formation between homologous sites on adjacent subunits. To establish whether the homologous sites are proximal in the ground-state conformation of DAGK or whether the disulfide bonds formed as a result of motions that brought normally distal sites into transient proximity, additional cross-linking experiments were carried out in three different milieus of varying fluidity [mixed micelles, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) vesicles, and Escherichia coli membranes]. Cross-linking experiments included disulfide bond formation under three different catalytic conditions [Cu(II)-phenanthroline oxidation, I(2) oxidation, and thionitrobenzoate-based thiol exchange] and reactions with a set of bifunctional thiol-reactive chemical cross-linkers presenting two different reactive chemistries and several spacer lengths. On the basis of these studies, residues 53 and 75 are judged to be in stable proximity within the DAGK homotrimer, while position 52 appears to be more distal and forms disulfide bonds only as a result of protein motions. Results for position 74 were ambiguous. In lipid vesicles and mixed micelles DAGK appears to execute motions that are not present in native membranes, with mobility also being higher for DAGK in mixed micelles than in POPC vesicles.  相似文献   

13.
While amphipols have been proven useful for refolding of seven transmembrane helical (7-TM) proteins including G-protein-coupled receptors (GPCRs) and it could be shown that an amphipol environment is in principle suitable for NMR structural studies of the embedded protein, high-resolution NMR insights into amphipol refolded and isotopically labeled GPCRs are still very limited. Here we report on the recent progress toward NMR structural studies of the melanocortin-2 and -4 receptors, two class A GPCRs which so far have not been reported to be incorporated into an amphipol environment. Making use of the established 7-TM protein bacteriorhodopsin (BR) we initially tested and optimized amphipol refolding conditions. Most promising conditions were transferred to the refolding of the two melanocortin receptors. Analytical-scale refolding experiments on the melanocortin-2 receptor show very similar behavior to the results obtained on BR. Using cell-free protein expression we could generate sufficient amounts of isotopically labeled bacteriorhodopsin as well as melanocortin-2 and -4 receptors for an initial NMR analysis. Upscaling of the amphipol refolding protocol to protein amounts needed for NMR structural studies was, however, not straightforward and impeded detailed NMR insights for the two GPCRs. While well-resolved and dispersed NMR spectra could only be obtained for bacteriorhodopsin, a comparison of NMR data recorded on the melanocortin-4 receptor in SDS and in an amphipol environment indicates that amphipol refolding induces larger structural modifications in the receptor.  相似文献   

14.
Diacylglycerol kinase (DAGK) is a 13-kDa integral membrane protein that spans the lipid bilayer three times and which is active in some micellar systems. In this work DAGK was purified using metal ion chelate chromatography, and its structural properties in micelles and organic solvent mixtures studies were examined, primarily to address the question of whether the structure of DAGK can be determined using solution NMR methods. Cross-linking studies established that DAGK is homotrimeric in decyl maltoside (DM) micelles and mixed micelles. The aggregate detergent-protein molecular mass of DAGK in both octyl glucoside and DM micelles was determined to be in the range of 100-110 kDa-much larger than the sum of the molecular weights of the DAGK trimers and the protein-free micelles. In acidic organic solvent mixtures, DAGK-DM complexes were highly soluble and yielded relatively well-resolved NMR spectra. NMR and circular dichroism studies indicated that in these mixtures the enzyme adopts a kinetically trapped monomeric structure in which it irreversibly binds several detergent molecules and is primarily alpha-helical, but in which its tertiary structure is largely disordered. Although these results provide new information regarding the native oligomeric state of DAGK and the structural properties of complex membrane proteins in micelles and organic solvent mixtures, the results discourage the notion that the structure of DAGK can be readily determined at high resolution with solution NMR methods.  相似文献   

15.
Membrane topology of Escherichia coli diacylglycerol kinase.   总被引:1,自引:1,他引:0       下载免费PDF全文
The topology of Escherichia coli diacylglycerol kinase (DAGK) within the cytoplasmic membrane was elucidated by a combined approach involving both multiple aligned sequence analysis and fusion protein experiments. Hydropathy plots of the five prokaryotic DAGK sequences available were uniform in their prediction of three transmembrane segments. The hydropathy predictions were experimentally tested genetically by fusing C-terminal deletion derivatives of DAGK to beta-lactamase and beta-galactosidase. Following expression, the enzymatic activities of the chimeric proteins were measured and used to determine the cellular location of the fusion junction. These studies confirmed the hydropathy predictions for DAGK with respect to the number and approximate sequence locations of the transmembrane segments. Further analysis of the aligned DAGK sequences detected probable alpha-helical N-terminal capping motifs and two amphipathic alpha-helices within the enzyme. The combined fusion and sequence data indicate that DAGK is a polytopic integral membrane protein with three transmembrane segments with the N terminus of the protein in the cytoplasm, the C terminus in the periplasmic space, and two amphipathic helices near the cytoplasmic surface.  相似文献   

16.
Mi D  Kim HJ  Hadziselimovic A  Sanders CR 《Biochemistry》2006,45(33):10072-10084
Escherichia coli diacylglycerol kinase (DAGK) is a homotrimeric helical integral membrane protein in which a number of single-site mutations to cysteine are known to promote misfolding. Here, effects of other amino acid replacements have been explored using a folding assay based on the dilution of acidic urea/DAGK stock solutions into detergent/lipid mixed micelles. DAGK with an I110P or I110R mutation in the third transmembrane helix could not be purified because its expression was toxic to the E. coli host, most likely because of severe folding defects. Other mutations at Ile110 enhanced irreversible misfolding to varying degrees that generally correlated both with the polarity of the inserted amino acid and with the degree of protein destabilization. However, the I110W mutant was an exception in that it was highly misfolding prone while at the same time being more stable than the wild-type protein. This contrasts with I110Y, which also exhibited enhanced stability but folded with an efficiency similar to that of the wild type. For most mutants, the critical step leading to irreversible misfolding occurred for monomeric DAGK prior to trimerization and independent of association with mixed micelles. Misfolding of DAGK evidently involves the formation of incorrect monomer tertiary structure. Mutations appear to enhance misfolding by disfavoring the formation of correct structure rather than by directly stabilizing the misfolded state. Finally, when urea-solubilized DAGK was diluted into detergent/lipid-free buffer, it retained a significant degree of folding competency over a period of minutes. This property may be relevant to membrane protein folding in cells under conditions where the usual machinery associated with membrane integration is saturated, dysregulated, or dysfunctional.  相似文献   

17.
Amphipols are amphipathic polymers designed to replace or supplement detergents in membrane protein solution studies. Previous work has suggested both advantages and disadvantages to the use of a polyacrylate-based amphipol, A8-35, for studying the sarcoplasmic reticulum Ca2+-ATPase (SERCA1a). We investigated this issue further using a set of four amphipols with different chemical structures. Previous size exclusion chromatography experiments had shown that A8-35 and SERCA1a/A8-35 complexes aggregate under certain conditions. We show here that aggregation can be prevented by omitting calcium from buffers or by using a sulfonated version of A8-35. A8-35 had previously been shown to protect Ca2+-ATPase from irreversible denaturation, while inhibiting its activity in a reversible manner. We show here that the other three amphipols tested also display these properties and that all four amphipols slow down backward calcium dissociation from the nonphosphorylated solubilized enzyme, a priori an unrelated step. As this calcium dissociation involves the opening up of the bundle of transmembrane ATPase segments, the slowing of this process may indicate that multipoint attachment of the polymers to the hydrophobic transmembrane surface damps protein dynamics ("Gulliver" effect). Damping might be the reason why amphipols also simultaneously protect membrane proteins against irreversible denaturation and may inhibit the activity of those of them that display large rearrangements of their transmembrane surface during their catalytic cycle.  相似文献   

18.
Amphipols are short-chain amphipathic polymers designed to keep membrane proteins soluble in aqueous solutions. We have evaluated the effects of the interaction of amphipols with sarcoplasmic reticulum Ca(2+)-ATPase either in a membrane-bound or a soluble form. If the addition of amphipols to detergent-solubilized ATPase was followed by removal of detergent, soluble complexes formed, but these complexes retained poor ATPase activity, were not very stable upon long incubation periods, and at high concentrations they experienced aggregation. Nevertheless, adding excess detergent to diluted detergent-free ATPase-amphipol complexes incubated for short periods immediately restored full activity to these complexes, showing that amphipols had protected solubilized ATPase from the rapid and irreversible inactivation that otherwise follows detergent removal. Amphipols also protected solubilized ATPase from the rapid and irreversible inactivation observed in detergent solutions if the ATPase Ca(2+) binding sites remain vacant. Moreover, in the presence of Ca(2+), amphipol/detergent mixtures stabilized concentrated ATPase against inactivation and aggregation, whether in the presence or absence of lipids, for much longer periods of time (days) than detergent alone. Our observations suggest that mixtures of amphipols and detergents are promising media for handling solubilized Ca(2+)-ATPase under conditions that would otherwise lead to its irreversible denaturation and/or aggregation.  相似文献   

19.
Seed lipid bodies constitute natural emulsions stabilized by specialized integral membrane proteins, among which the most abundant are oleosins, followed by the calcium binding caleosin. These proteins exhibit a triblock structure, with a highly hydrophobic central region comprising up to 71 residues. Little is known on their three-dimensional structure. Here we report the solubilization of caleosin and of two oleosins in aqueous solution, using various detergents or original amphiphilic polymers, amphipols. All three proteins, insoluble in water buffers, were maintained soluble either by anionic detergents or amphipols. Neutral detergents were ineffective. In complex with amphipols the oleosins and caleosin contain more beta and less alpha secondary structures than in the SDS detergent, as evaluated by synchrotron radiation circular dichroism. These are the first reported structural results on lipid bodies proteins maintained in solution with amphipols, a promising alternative to notoriously denaturing detergents.  相似文献   

20.
The trimeric light-harvesting complexes II (LHCII) of plants and green algae are pigment-protein complexes involved in light harvesting and photoprotection. Different conformational states have been proposed to be responsible for their different functions. At present, detergent-solubilized LHCII is used as a model for the “light-harvesting conformation”, whereas the “quenched conformation” is mimicked by LHCII aggregates. However, none of these conditions seem to perfectly reproduce the properties of LHCII in vivo. In addition, several monomeric LHC complexes are not fully stable in detergent. There is thus a need to find conditions that allow analyzing LHCs in vitro in stable and, hopefully, more native-like conformations. Here, we report a study of LHCII, the major antenna complex of plants, in complex with amphipols. We have trapped trimeric LHCII and monomeric Lhcb1 with either polyanionic or non-ionic amphipols and studied the effect of these polymers on the properties of the complexes. We show that, as compared to detergent solutions, amphipols have a stabilizing effect on LHCII. We also show that the average fluorescence lifetime of LHCII trapped in an anionic amphipol is ~30 % shorter than in α-dodecylmaltoside, due to the presence of a conformation with 230-ps lifetime that is not present in detergent solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号