首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Optimal conditions were found for the oxidation of luminol by hydrogen peroxide in the presence of peroxidase isolated from leaves of the African oil palm tree Elaeis guineensis (AOPTP). The pH range for maximal chemiluminescence intensity (8.3-8.6) is similar for AOPTP, horseradish, and Arthromyces ramosus peroxidases and slightly different from that for tobacco peroxidase (9.3). Increasing the buffer concentration decreases the chemiluminescence intensity. As in the case of other anionic peroxidases, the catalytic efficiency of AOPTP does not depend on the presence of enhancers (4-iodophenol and 4-hydroxycinnamic acid) in the reaction medium. The detectable limit of AOPTP assayed by luminol peroxidation is 2·10–12 M. The long-term chemiluminescence signal produced during AOPTP-dependent luminol peroxidation is a characteristic feature of the African oil palm enzyme. This feature in combination with its very high stability suggests that AOPTP will be a promising tool in analytical practice.  相似文献   

2.
A detailed kinetic study on thermal inactivation of African oil palm tree peroxidase (AOPTP) at different pHs has been carried out. The enzyme does not undergo inactivation over a broad range from pH 2 to 12 at ambient temperature. Complete inactivation of AOPTP is observed only at 70 degrees C and extremal pHs like <3.0 and >12.0, whereas under neutral conditions, its activity shows no changes. The study of AOPTP inactivation kinetics in the presence of dithiothreitol (DTT) and ethylenediaminetetraacetic acid (EDTA) showed that calcium ions, disulfide bonds and the interaction between apo-AOPTP and heme are important structural elements responsible for the enzyme stability. The guanidium hydrochloride (GdHCl)-induced inactivation of AOPTP indicated that the hydrogen-bonding network plays also a significant role in stabilizing the active structure of the enzyme. AOPTP is stable toward hydrogen peroxide treatment, especially under neutral conditions. The comparison of AOPTP stability to that of other peroxidases shows that AOPTP is the most stable peroxidase reported so far.  相似文献   

3.
The peroxidase-catalyzed oxidation of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), o-phenylenediamine (PDA), and 3,3',5,5'-tetramethylbenzidine (TMB) was found to be activated by tetrazole and 5-aminotetrazole (AT) and weakly inhibited by 1,5-diaminotetrazole. The activating action of tetrazole and AT on the PDA and TMB oxidation was clearly discompetitive and that on ABTS was non-competitive. The coefficients (degrees) of activation alpha were determined for three substrates and two activators; they depended on the substrate type and the buffer nature and increased along with the pH growth from 6.4 to 7.2. For AT and tetrazole, the maximal alpha values were 4140 and 800 M(-1), respectively, upon the PDA oxidation and 3570 and 540 M(-1), respectively, upon the TMB oxidation. Lower alpha values (145 and 58 M(-1) for tetrazole and AT, respectively) were characteristic of the peroxidase oxidation of ABTS. The activation of peroxidase oxidation of the substrates by tetrazole and AT at pH > or = 5.4 was explained by the nucleophilic nature of the activators interacting with the amino acid residues in the peroxidase active site according to the mechanism of acid-base catalysis. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 3; see also http://www.maik.ru.  相似文献   

4.
Vanadium haloperoxidases have been reported to mediate the oxidation of halides to hypohalous acid and the sulfoxidation of organic sulfides to the corresponding sulfoxides in the presence of hydrogen peroxide. However, traditional heme peroxidase substrates were reported not to be oxidized by vanadium haloperoxidases. Surprisingly, we have now found that the recombinant vanadium chloroperoxidase from the fungus Curvularia inaequalis catalyzes the oxidation of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), a classical chromogenic heme peroxidase substrate. The enzyme mediates the oxidation of ABTS in the presence of hydrogen peroxide with a turnover frequency of 11 s(-1) at its pH optimum of 4.0. The Km of the recombinant enzyme for ABTS was observed to be approximately 35 microM at this pH value. In addition, the bleaching of an industrial sulfonated azo dye, Chicago Sky Blue 6B, catalyzed by the recombinant vanadium chloroperoxidase in the presence of hydrogen peroxide is reported.  相似文献   

5.
The catalase dissociation into subunits has been studied at pH less than 3.5 and greater than 11.0. This process is characterized by pseudo-first order rate constants, depending on the initial concentrations of the enzyme and H+. At pH 2.85, the steady-state kinetics of five aromatic amines oxidation by catalase monomers has been studied for orthodianisidine (o-DA), 3,5,3',5'-tetramethylbenzidine (TMB), ortho- and para-phenylene diamine (p-PDA) and 5-aminosalycilic acid. The optimal substrates for catalase in acidic solutions are o-DA, TMB and p-PDA. A comparison has been carried out for the catalase peroxidative activity, and the catalytic characteristics of horseradish peroxidase in the oxidation of the same substrate. The mechanisms of peroxidatic amines oxidation by catalase and horseradish peroxidase are discussed.  相似文献   

6.
Cyclometalated ruthenium(II) complexes, [Ru(II)(C~N)(N~N)(2)]PF(6) [HC~N=2-phenylpyridine (Hphpy) or 2-(4'-tolyl)pyridine; N~N=2,2'-bipyridine, 1,10-phenanthroline, or 4,4'-dimethyl-2,2'-bipyridine], are rapidly oxidized by H(2)O(2) catalyzed by plant peroxidases to the corresponding Ru(III) species. The commercial isoenzyme C of horseradish peroxidase (HRP-C) and two recently purified peroxidases from sweet potato (SPP) and royal palm tree (RPTP) have been used. The most favorable conditions for the oxidation have been evaluated by varying the pH, buffer, and H(2)O(2) concentrations and the apparent second-order rate constants ( k(app)) have been measured. All the complexes studied are oxidized by HRP-C at similar rates and the rate constants k(app) are identical to those known for the best substrates of HRP-C (10(6)-10(7) M(-1) s(-1)). Both cationic (HRP-C) and anionic (SPP and RPTP) peroxidases show similar catalytic efficiency in the oxidation of the Ru(II) complexes. The mediating capacity of the complexes has been evaluated using the SPP-catalyzed co-oxidation of [Ru(II)(phpy)(bpy)(2)]PF(6) and catechol as a poor peroxidase substrate as an example. The rate of enzyme-catalyzed oxidation of catechol increases more than 10000-fold in the presence of the ruthenium complex. A simple routine for calculating the rate constant k(c) for the oxidation of catechol by the Ru(III) complex generated enzymatically from [Ru(II)(phpy)(bpy)(2)](+) is proposed. It is based on the accepted mechanism of peroxidase catalysis and involves spectrophotometric measurements of the limiting Ru(II) concentration at different concentrations of catechol. The calculated k(c) value of 0.75 M(-1) s(-1) shows that the cyclometalated Ru(II) complexes are efficient mediators in peroxidase catalysis.  相似文献   

7.
The reaction of nitrite (NO2-) with horseradish peroxidase and lactoperoxidase was studied. Sequential mixing stopped-flow measurements gave the following values for the rate constants of the reaction of nitrite with compounds II (oxoferryl heme intermediates) of horseradish peroxidase and lactoperoxidase at pH 7.0, 13.3 +/- 0.07 mol(-1) dm3 s(-1) and 3.5 +/- 0.05 x 10(4) mol(-1) dm3 s(-1), respectively. Nitrite, at neutral pH, influenced measurements of activity of lactoperoxidase with typical substrates like 2,2'-azino-bis[ethyl-benzothiazoline-(6)-sulphonic acid] (ABTS), guaiacol or thiocyanate (SCN-). The rate of ABTS and guaiacol oxidation increased linearly with nitrite concentration up to 2.5-5 mmol dm(-3). On the other hand, two-electron SCN- oxidation was inhibited in the presence of nitrite. Thus, nitrite competed with the investigated substrates of lactoperoxidase. The intermediate, most probably nitrogen dioxide (*NO2), reacted more rapidly with ABTS or guaiacol than did lactoperoxidase compound II. It did not, however, effectively oxidize SCN- to OSCN-. NO2- did not influence the activity measurements of horseradish peroxidase by ABTS or guaiacol method.  相似文献   

8.
We optimized the conditions for luminol oxidation by hydrogen peroxide in the presence of peroxidase (EC 1.11.1.7) from royal palm leaves (Roystonea regia). The pH range (8.3-8.6) corresponding to maximum chemiluminescence was similar for palm tree peroxidase and horseradish peroxidase. Variations in the concentration of the Tris buffer were accompanied by changes in chemiluminescence. Note that maximum chemiluminescence was observed in the 30 mM solution. The detection limit of the enzyme assay during luminol oxidation by hydrogen peroxide was 1 pM. The specific feature of palm tree peroxidase was the generation of a long-term chemiluminescent signal. In combination with the data on the high stability of palm tree peroxidase, our results indicate that this enzyme is promising for its use in analytical studies.  相似文献   

9.
The thermal stability of peroxidase from leaves of the African oil palm tree Elaeis guineensis (AOPTP) at pH 3.0 was studied by differential scanning calorimetry (DSC), intrinsic fluorescence, CD and enzymatic assays. The spectral parameters as monitored by ellipticity changes in the far-UV CD spectrum of the enzyme as well as the increase in tryptophan intensity emission upon heating, together with changes in enzymatic activity with temperature were seen to be good complements to the highly sensitive but integral method of DSC. The data obtained in this investigation show that thermal denaturation of palm peroxidase is an irreversible process, under kinetic control, that can be satisfactorily described by the two-state kinetic scheme, N -->(k) D, where k is a first-order kinetic constant that changes with temperature, as given by the Arrhenius equation; N is the native state, and D is the denatured state. On the basis of this model, the parameters of the Arrhenius equation were calculated.  相似文献   

10.
We optimized the conditions for oxidation of luminol by hydrogen peroxide in the presence of peroxidase (EC 1.11.1.7) from royal palm leaves (Roystonea regia). The pH range (8.3–8.6) corresponding to maximum chemiluminescence was similar for palm tree peroxidase and horseradish peroxidase. Variations in the concentration of the Tris buffer were accompanied by changes in chemiluminescence. Note that maximum chemiluminescence was observed in the 30 mM Tris solution. The detection limit of the enzyme assay during luminol oxidation by hydrogen peroxide was 1 pM. The specific feature of palm tree peroxidase was the generation of a long-term chemiluminescent signal. In combination with the data on the high stability of palm tree peroxidase, our results indicate that this enzyme is promising for its use in analytical studies.  相似文献   

11.
Fungal laccases are well investigated enzymes with high potential in diverse applications like bleaching of waste waters and textiles, cellulose delignification, and organic synthesis. However, they are limited to acidic reaction conditions and require eukaryotic expression systems. This raises a demand for novel laccases without these constraints. We have taken advantage of the laccase engineering database LccED derived from genome mining to identify and clone the laccase Ssl1 from Streptomyces sviceus which can circumvent the limitations of fungal laccases. Ssl1 belongs to the family of small laccases that contains only few characterized enzymes. After removal of the twin-arginine signal peptide Ssl1 was readily expressed in E. coli. Ssl1 is a small laccase with 32.5 kDa, consists of only two cupredoxin-like domains, and forms trimers in solution. Ssl1 oxidizes 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and phenolic substrates like 2,6-dimethoxy phenol, guaiacol, and syringaldazine. The kcat value for ABTS oxidation was at least 20 times higher than for other substrates. The optimal pH for oxidation reactions is substrate dependent: for phenolic substrates the highest activities were detected at alkaline conditions (pH 9.0 for 2,6-dimethoxy phenol and guaiacol and pH 8.0 for syringaldazine), while the highest reaction rates with ABTS were observed at pH 4.0. Though originating from a mesophilic organism, Ssl demonstrates remarkable stability at elevated temperatures (T1/2,60°C = 88 min) and in a wide pH range (pH 5.0 to 11.0). Notably, the enzyme retained 80% residual activity after 5 days of incubation at pH 11. Detergents and organic co-solvents do not affect Ssl1 stability. The described robustness makes Ssl1 a potential candidate for industrial applications, preferably in processes that require alkaline reaction conditions.  相似文献   

12.
Manganese peroxidase and lignin peroxidase are ligninolytic heme-containing enzymes secreted by the white-rot fungus Phanerochaete chrysosporium. Despite structural similarity, these peroxidases oxidize different substrates. Veratryl alcohol is a typical substrate for lignin peroxidase, while manganese peroxidase oxidizes chelated Mn2+. By a single mutation, S168W, we have added veratryl alcohol oxidase activity to recombinant manganese peroxidase expressed in Escherichia coli. The kcat for veratryl alcohol oxidation was 11 s-1, Km for veratryl alcohol approximately 0.49 mM, and Km for hydrogen peroxide approximately 25 microM at pH 2.3. The Km for veratryl alcohol was higher and Km for hydrogen peroxide was lower for this manganese peroxidase mutant compared to two recombinant lignin peroxidase isoenzymes. The mutant retained full manganese peroxidase activity and the kcat was approximately 2.6 x 10(2) s-1 at pH 4.3. Consistent with relative activities with respect to these substrates, Mn2+ strongly inhibited veratryl alcohol oxidation. The single productive mutation in manganese peroxidase suggested that this surface tryptophan residue (W171) in lignin peroxidase is involved in catalysis.  相似文献   

13.
We studied the metabolism of polycyclic aromatic hydrocarbons (PAHs) by using white rot fungi previously identified as organisms that metabolize polychlorinated biphenyls. Bran flakes medium, which has been shown to support production of high levels of laccase and manganese peroxidase, was used as the growth medium. Ten fungi grown for 5 days in this medium in the presence of anthracene, pyrene, or phenanthrene, each at a concentration of 5 μg/ml could metabolize these PAHs. We studied the oxidation of 10 PAHs by using laccase purified from Coriolopsis gallica. The reaction mixtures contained 20 μM PAH, 15% acetonitrile in 60 mM phosphate buffer (pH 6), 1 mM 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulfonate) (ABTS), and 5 U of laccase. Laccase exhibited 91% of its maximum activity in the absence of acetonitrile. The following seven PAHs were oxidized by laccase: benzo[a]pyrene, 9-methylanthracene, 2-methylanthracene, anthracene, biphenylene, acenaphthene, and phenanthrene. There was no clear relationship between the ionization potential of the substrate and the first-order rate constant (k) for substrate loss in vitro in the presence of ABTS. The effects of mediating substrates were examined further by using anthracene as the substrate. Hydroxybenzotriazole (HBT) (1 mM) supported approximately one-half the anthracene oxidation rate (k = 2.4 h−1) that ABTS (1 mM) supported (k = 5.2 h−1), but 1 mM HBT plus 1 mM ABTS increased the oxidation rate ninefold compared with the oxidation rate in the presence of ABTS, to 45 h−1. Laccase purified from Pleurotus ostreatus had an activity similar to that of C. gallica laccase with HBT alone, with ABTS alone, and with 1 mM HBT plus 1 mM ABTS. Mass spectra of products obtained from oxidation of anthracene and acenaphthene revealed that the dione derivatives of these compounds were present.  相似文献   

14.
In order to investigate the ability of the Vitreoscilla hemoglobin (VHb) to act as a peroxidase, the protein was overexpressed in Escerichia coli and purified using a 6xHis-tag. The peroxidase activity of VHb was studied using 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferrocene carboxylic acid (FcCOOH) dopamine and l-dopa as substrates. The effects of external agents such as pH, salt concentration/ionic strength, and the thermal stability of VHb on the catalytic activity were assessed. The optimum pH for VHb using ABTS as a substrate was estimated to be 6–7. The VHb protein proved to be stable up to 80 °C, as judged by its peroxidase activity. Furthermore, NaCl concentrations up to 100 mM did not exert any significant effect on the activity. The catalytic activity against ABTS and FcCOOH was similar to that measured for horseradish peroxidase, whereas in the case of the phenolic substrates dopamine and l-dopa the activity was several orders of magnitude lower. The Michaelis constants, were in good agreement with the data for human and bovine hemoglobin. No activity could be detected for the negative controls lacking VHb. These results demonstrate that VHb exhibits peroxidase activity, a finding in line with the hypothesis that VHb has cellular functions beyond the role as an oxygen carrier. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Malin Kvist and Ekaterina S. Ryabova contributed equally to this work.  相似文献   

15.
The peroxidase-catalyzed oxidation of 2,2-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), o-phenylenediamine (PDA), and 3,3,5,5-tetramethylbenzidine (TMB) was found to be activated by tetrazole and 5-aminotetrazole (AT) and weakly inhibited by 1,5-diaminotetrazole. The activating action of tetrazole and AT on the PDA and TMB oxidation was clearly discompetitive and that on ABTS was non-competitive. The coefficients (degrees) of activation were determined for three substrates and two activators; they depended on the substrate type and the buffer nature and increased along with the pH growth from 6.4 to 7.2. For AT and tetrazole, the maximal values were 4140 and 800 M–1, respectively, upon the PDA oxidation and 3570 and 540 M–1, respectively, upon the TMB oxidation. Lower values (145 and 58 M–1 for tetrazole and AT, respectively) were characteristic of the peroxidase oxidation of ABTS. The activation of peroxidase oxidation of the substrates by tetrazole and AT at pH 5.4 was explained by the nucleophilic nature of the activators interacting with the amino acid residues in the peroxidase active site according to the mechanism of acid–base catalysis.  相似文献   

16.
The analysis of IgGs to protect humans from oxidative stress through oxidation of harmful compounds was carried out. We have compared here for the first time peroxidase (in the presence of H2O2) and oxidoreductase (in the absence of H2O2) activities of IgGs from sera of healthy humans and patients with systemic lupus erythematosus (SLE) and multiple sclerosis (MS). In addition, substrate specificity of SLE and MS IgG preparations in the oxidation of different compounds was analyzed: 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) (ABTS), 3,3′‐diaminobenzidine (DAB), homovanillic acid (HVA), o‐phenylenediamine (OPD), α‐naphthol, 3‐amino‐9‐ethylcarbazole (AEC), p‐hydroquinone (pHQ), and adrenaline. IgGs of healthy humans and SLE and MS patients oxidized DAB, ABTS, and OPD due to their peroxidase and oxidoreductase activities, while other compounds were substrates of IgGs only in the presence of H2O2: adrenaline was not oxidized by both activities of IgGs. The average SLE IgGs peroxidase activity increased statistically significant in comparison with abzymes from healthy humans in the order (‐fold): OPD (1.2) <  DAB (1.7) < α‐naphtol (2.2) ≤ AEC (2.4) < ABTS (4.5) < 5‐ASA (10.6), while with oxidoreductase activity: OPD (1.8) ≤ DAB (2.1‐fold) < ABTS (5.0). Only HVA was oxidized by IgGs with peroxidase activity of healthy donors faster than by SLE (1.3‐fold) and MS abzymes (2.4‐fold). In the oxidation of several substrates, only three IgGs of MS patients were used. The data speak of a tendency to increase the peroxidase and oxidoreductase activities of MS IgGs in comparison with healthy donors, but to a lesser extent: OPD (1.1 to 1.2‐fold) ≤ ABTS (1.2 to 1.8‐fold). It was shown that development of SLE and MS leads to increase in peroxidase and oxidoreductase activities of IgGs toward most of classical substrates. Thus, abzymes can serve as an additional factor of reactive oxygen species detoxification protecting of patients with SLE and MS from some harmful compounds somewhat better than healthy peoples.  相似文献   

17.
《Plant science》2001,161(5):853-860
Screening of tropical plants demonstrated high peroxidase activity in leaves of some species of palms. Using the leaves of royal palm Roystonea regia as a source, the peroxidase has been isolated to homogeneity. The enzyme purification steps included homogenization, (NH4)2SO4 precipitation, extraction of palm leaf colored compounds and consecutive chromatography on Phenyl-Sepharose, Sephacryl S100 and DEAE-Toyopearl. The novel peroxidase was characterized as having a specific activity of 6170 U/mg, RZ 3.0, molecular weight of 51 kDa and isoelectric point pI 3.5. The electronic spectrum of RPP is characteristic for plant peroxidases with a Soret maximum at 403 nm and maxima in a visible region at 492 and 633 nm, respectively. The substrate specificity of royal palm tree peroxidase (RPTP) is distinct from the specificity of other plant peroxidases. The best substrates for RPTP are ferulic acid and 2,2′-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid). The palm peroxidase exhibits an unusually high thermostability inactivating at 90 °C with kinac of 1.5×10−2 min−1.  相似文献   

18.
The peroxidase activity of carboxymethylated cytochrome c (Cmcytc) has been investigated by spectroscopic and kinetic techniques to examine the effect of carboxymethylation on the peroxidase activity of native cytochrome c (cytc). The optical spectrum suggests that the reaction of Cmcytc with H(2)O(2) proceeds through only one intermediate, compound I. The apparent rate constant (k(app)) for the reaction was found to be 17, 72 and 210 M(-1) s(-1) at pH 7.0, 5.0 and 3.5 respectively. These values are about 60 times larger than those reported for native cytc (0.236 M(-1) s(-1) at pH 7.0), and about five orders of magnitude lower than those for classical peroxidases. Cmcytc was found to catalyse oxidation of organic and inorganic substrates. The second order rate constant for the oxidation of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) by Cmcytc (205 [H(2)O(2)] s(-1)) is found to be larger than the corresponding value for native cytc (50 [H(2)O(2)] s(-1)) at pH 6.0. The carboxymethylation of cytc ruptures the Fe-S (Met 80) bond and increases the rate of its reaction with H(2)O(2), and its catalytic activity. The specific activity of Cmcytc was measured spectrophotometrically by the reported method using ABTS as substrate, and was found to be 288, 473 and 872 microM min(-1) mg(-1) at pH 7.0, 5.0 and 3.5 respectively. Resonance Raman studies indicated the presence of a bis-histidine coordinated form of Cmcytc at neutral pH, and the existence of a population distribution of different ligation states such as bis-histidine (HH), histidine-water (HW) and five coordinate (5C) forms at lower pH. The relative population of different species in Cmcytc was found to be HH (approximately 100%, approximately 50%, approximately 44%), HW (approximately 0%, approximately 44%, 41%) and 5C (approximately 0%, approximately 6%, 15%) at pH 7.0, 4.7 and 3.1 respectively. We have attempted to correlate the pH dependence of the reaction of Cmcytc with hydrogen peroxide and its peroxidase activity with the haem stereochemical structures observed for Cmcytc. Steady-state and time-resolved tryptophan fluorescence studies on Cmcytc were done to probe the conformational changes around the haem pocket of Cmcytc.  相似文献   

19.
20.
Laccase activity tests and laccase inhibitors   总被引:9,自引:0,他引:9  
Sulfhydryl organic compounds described as laccase inhibitors: dithiothreitol, thioglycolic acid, cysteine, diethyldithiocarbamic acid, and sodium azide were tested for their activity toward laccase of Trametes versicolor in different test systems utilising 2, 2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and 2, 6-dimethoxyphenol as enzyme substrates. Only sodium azide acted as a true laccase inhibitor and showed no significant interference with the enzyme tests. All other substances did not significantly inhibit the laccase activity and the previously reported inhibitory effects result from the reductions of the reaction products such as ABTS radical cation and diquinone or subsequent non-enzymatic interactions during substrate oxidation. The latter apparently forms a complex with unreacted ABTS displaying varied spectral characteristics and resulting in an underestimation of enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号