首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The exact sites, structures, and molecular mechanisms of interaction between junction organizing zona occludence protein 1 (ZO-1) and the tight junction protein occludin or the adherens junction protein alpha-catenin are unknown. Binding studies by surface plasmon resonance spectroscopy and peptide mapping combined with comparative modeling utilizing crystal structures led for the first time to a molecular model revealing the binding of both occludin and alpha-catenin to the same binding site in ZO-1. Our data support a concept that ZO-1 successively associates with alpha-catenin at the adherens junction and occludin at the tight junction. Strong spatial evidence indicates that the occludin C-terminal coiled-coil domain dimerizes and interacts finally as a four-helix bundle with the identified structural motifs in ZO-1. The helix bundle of occludin406-521 and alpha-catenin509-906 interacts with the hinge region (ZO-1591-632 and ZO-1591-622, respectively) and with (ZO-1726-754 and ZO-1756-781) in the GuK domain of ZO-1 containing coiled-coil and alpha-helical structures, respectively. The selectivity of both protein-protein interactions is defined by complementary shapes and charges between the participating epitopes. In conclusion, a common molecular mechanism of forming an intermolecular helical bundle between the hinge region/GuK domain of ZO-1 and alpha-catenin and occludin is identified as a general molecular principle organizing the association of ZO-1 at adherens and tight junctions.  相似文献   

2.
McKenzie JA  Riento K  Ridley AJ 《FEBS letters》2006,580(9):2388-2394
Occludin is an integral-membrane protein that contributes to tight junction function. We have identified casein kinase I epsilon (CKI epsilon) as a binding partner for the C-terminal cytoplasmic domain of occludin by yeast two-hybrid screening. CKI epsilon phosphorylated occludin and co-localised and co-immunoprecipitated with occludin from human endothelial cells. Amino acids 265-318 of occludin were sufficient for CKI epsilon binding and phosphorylation. Deletion of the C-terminal 48 amino acids of occludin increased CKI epsilon binding and phosphorylation, suggesting that this region inhibits CKI epsilon binding. These data identify CKI epsilon as a novel occludin kinase that may be important for the regulation of occludin.  相似文献   

3.
4.
Junctional adhesion molecule (JAM) is an integral membrane protein that has been reported to colocalize with the tight junction molecules occludin, ZO-1, and cingulin. However, evidence for the association of JAM with these molecules is missing. Transfection of Chinese hamster ovary cells with JAM (either alone or in combination with occludin) resulted in enhanced junctional localization of both endogenous ZO-1 and cotransfected occludin. Additionally, JAM was coprecipitated with ZO-1 in the detergent-insoluble fraction of Caco-2 epithelial cells. A putative PDZ-binding motif at the cytoplasmic carboxyl terminus of JAM was required for mediating the interaction of JAM with ZO-1, as assessed by in vitro binding and coprecipitation experiments. JAM was also coprecipitated with cingulin, another cytoplasmic component of tight junctions, and this association required the amino-terminal globular head of cingulin. Taken together, these data indicate that JAM is a component of the multiprotein complex of tight junctions, which may facilitate junction assembly.  相似文献   

5.
6.
Most of the information on the structure and function of the tight junction (TJ) has been obtained in MDCK cells. Accordingly, we have sequenced ZO-1 in this cell type, because this protein is involved in the response of the TJ to changes in Ca2+, phosphorylation, and the cytoskeleton. ZO-1 of MDCK cells comprises 6805 bp with a predicted open reading frame of 1769 amino acids. This sequence is 92 and 87% homologous to human and mouse ZO-1, respectively. Two nuclear sorting signals located at the PDZ1 and GK domains and 17 SH3 putative binding sites at the proline-rich domain were detected. We found two new splicing regions at the proline-rich region: beta had not been reported in human and mouse counterparts, and gamma, which was previously sequenced in human and mouse ZO-1, is now identified as a splicing region. The expression of different beta and gamma isoforms varies according to the tissue tested. With the information provided by the sequence, Southern blot, and PCR experiments we can predict a single genomic copy of MDCK-ZO-1 that is at least 13.16 kb long. MDCK-ZO-1 mRNA is 7.4 kb long. Its expression is regulated by calcium, while the expression of MDCK-ZO-1 protein is not.  相似文献   

7.
8.
AimsUnder normal conditions, the intestinal mucosa acts as a local barrier to prevent the influx of luminal contents. The intestinal epithelial tight junction is comprised of several membrane associated proteins, including zonula occludens-1 (ZO-1) and occludin. Disruption of this barrier can lead to the production of pro-inflammatory mediators and ultimately multiple organ failure. We have previously shown that Pentoxifylline (PTX) decreases histologic gut injury and pro-inflammatory mediator synthesis. We hypothesize that PTX prevents the breakdown of ZO-1 and occludin in an in vitro model of immunostimulated intestinal cell monolayers.Main methodsCaco-2 human enterocytes were grown as confluent monolayers and incubated under control conditions, or with PTX (2 mM), Cytomix (TNF-α, IFN-γ, IL-1), or Cytomix + PTX for 24 h. Occludin and ZO-1 protein levels were analyzed by Western blot. Confocal microscopy was used to assess the cytoplasmic localization of ZO-1 and occludin.Key findingsCytomix stimulation of Caco-2 cells resulted in a 50% decrease in both occludin and ZO-1 protein. Treatment with Cytomix + PTX restored both occludin and ZO-1 protein to control levels. Confocal microscopy images show that Cytomix caused an irregular, undulating appearance of ZO-1 and occludin at the cell junctions. Treatment with PTX prevented the Cytomix-induced changes in ZO-1 and occludin localization.SignificanceTreatment with PTX decreases the pro-inflammatory cytokine induced changes in the intestinal tight junction proteins occludin and ZO-1. Pentoxifylline may be a useful adjunct in the treatment of sepsis and shock by attenuating intestinal barrier breakdown.  相似文献   

9.
Recent evidence points to a multifunctional role of ZO-2, the tight junction protein of the MAGUK (membrane-associated guanylate kinase-like) family. Though ZO-2 has been found in cell types lacking tight junction structures, such as vascular smooth muscle cells (VSMC), little is known about ZO-2 function in these cells. We provide evidence that ZO-2 mediates specific homotypic cell-to-cell contacts between VSMC. Using mass spectrometry we found that ZO-2 is associated with the non-receptor tyrosine kinase Jak1. By generating specific ZO-2 constructs we further found that the N-terminal fragment of ZO-2 molecule is responsible for this interaction. Adenovirus-based expression of Jak1 inactive mutant demonstrated that Jak1 mediates ZO-2 tyrosine phosphorylation. By means of RNA silencing, expression of Jak1 mutant form and fluorescently labeled ZO-2 fusion protein we further specified that active Jak1, but not Jak1 inactive mutant, mediates ZO-2 localization to the sites of intercellular contacts. We identified the urokinase receptor uPAR as a pre-requisite for these cellular events. Functional requirement of the revealed signaling complex for VSMC network formation was confirmed in experiments using Matrigel and in contraction assay. Our findings imply involvement of the ZO-2 tight junction independent signaling complex containing Jak1 and uPAR in VSMC intercellular communications. This mechanism may contribute to vascular remodeling in occlusive cardiovascular diseases and in arteriogenesis.  相似文献   

10.
11.
Tight junctions might play a role during tissue morphogenesis and cell differentiation. In order to address these questions, we have studied the distribution pattern of the tight junction-associated proteins ZO-1, ZO-2, ZO-3 and occludin in the developing mouse tooth as a model. A specific temporal and spatial distribution of tight junction-associated proteins during tooth development was observed. ZO-1 appeared discontinuously in the cell membrane of enamel organ and dental mesenchyme cells. However, endothelial cells of the dental mesenchyme capillaries displayed a continuous fluorescence at the cell membrane. Inner dental epithelium first showed an evident signal for ZO-1 at the basal pole of the cells at bud/cap stage, but ZO-1 was accumulated at the basal and apical pole of preameloblast/ameloblasts at late bell stage. Surprisingly, in the incisor ZO-1 decreased as the inner dental epithelium differentiated, and was re-expressed in secretory and mature ameloblasts. On the contrary, ZO-2 was confined to continuous cell-cell contacts of the enamel organ in both molars and incisors. The lateral cell membrane of inner dental epithelial cells was specifically ZO-2 labeled. However, ZO-3 was expressed in oral epithelium whereas dental embryo tissues were negative. In addition, occludin was hardly detected in dental tissues at the early stage of tooth development, but was distributed continuously at the cell membrane of endothelial cells of ED19.5 dental mesenchyme. In incisors, occludin was detected at the cell membrane of the secretory pole of ameloblasts. The occurrence and relation during tooth development of tight junction proteins ZO-1, ZO-2 and occludin, but not ZO-3, suggests a combinatory assembly in tooth morphogenesis and cell differentiation.  相似文献   

12.
The tight junction is the most apical intercellular junction of epithelial cells and regulates transepithelial permeability through the paracellular pathway. To examine possible functions for the tight junction-associated protein ZO-1, C-terminally truncated mutants and a deletion mutant of ZO-1 were epitope tagged and stably expressed in corneal epithelial cell lines. Only full-length ZO-1 and one N-terminal truncation mutant targeted to cell borders; other mutants showed variable cytoplasmic distributions. None of the mutants initially disrupted the localization of endogenous ZO-1. However, long-term stable expression of two of the N-terminal mutants resulted in a dramatic change in cell shape and patterns of gene expression. An elongated fibroblast-like shape replaced characteristic epithelial cobblestone morphology. In addition, vimentin and smooth muscle actin expression were up-regulated, although variable cytokeratin expression remained, suggesting a partial transformation to a mesenchymal cell type. Concomitant with the morphological change, the expression of the integral membrane tight junction protein occludin was significantly down-regulated. The localizations of endogenous ZO-1 and another family member, ZO-2, were disrupted. These findings suggest that ZO-1 may participate in regulation of cellular differentiation.  相似文献   

13.
《The Journal of cell biology》1994,127(6):1617-1626
Occludin is an integral membrane protein localizing at tight junctions (TJ) with four transmembrane domains and a long COOH-terminal cytoplasmic domain (domain E) consisting of 255 amino acids. Immunofluorescence and laser scan microscopy revealed that chick full- length occludin introduced into human and bovine epithelial cells was correctly delivered to and incorporated into preexisting TJ. Further transfection studies with various deletion mutants showed that the domain E, especially its COOH-terminal approximately 150 amino acids (domain E358/504), was necessary for the localization of occludin at TJ. Secondly, domain E was expressed in Escherichia coli as a fusion protein with glutathione-S-transferase, and this fusion protein was shown to be specifically bound to a complex of ZO-1 (220 kD) and ZO-2 (160 kD) among various membrane peripheral proteins. In vitro binding analyses using glutathione-S-transferase fusion proteins of various deletion mutants of domain E narrowed down the sequence necessary for the ZO-1/ZO-2 association into the domain E358/504. Furthermore, this region directly associated with the recombinant ZO-1 produced in E. coli. We concluded that occludin itself can localize at TJ and directly associate with ZO-1. The coincidence of the sequence necessary for the ZO-1 association with that for the TJ localization suggests that the association with underlying cytoskeletons through ZO-1 is required for occludin to be localized at TJ.  相似文献   

14.
15.
《The Journal of cell biology》1990,111(3):1255-1263
The foot processes of glomerular epithelial cells of the mammalian kidney are firmly attached to one another by shallow intercellular junctions or slit diaphragms of unknown composition. We have investigated the molecular nature of these junctions using an antibody that recognizes ZO-1, a protein that is specific for the tight junction or zonula occludens. By immunoblotting the affinity purified anti-ZO-1 IgG recognizes a single 225-kD band in kidney cortex and in slit diaphragm-enriched fractions as in other tissues. When ZO-1 was localized by immunofluorescence in kidney tissue of adult rats, the protein was detected in epithelia of all segments of the nephron, but the glomerular epithelium was much more intensely stained than any other epithelium. Among tubule epithelia the signal for ZO-1 correlated with the known fibril content and physiologic tightness of the junctions, i.e., it was highest in distal and collecting tubules and lowest in the proximal tubule. By immunoelectron microscopy ZO-1 was found to be concentrated on the cytoplasmic surface of the tight junctional membrane. Within the glomerulus ZO-1 was localized predominantly in the epithelial foot processes where it was concentrated precisely at the points of insertion of the slit diaphragms into the lateral cell membrane. Its distribution appeared to be continuous along the continuous slit membrane junction. When ZO-1 was localized in differentiating glomeruli in the newborn rat kidney, it was present early in development when the apical junctional complexes between presumptive podocytes are composed of typical tight and adhering junctions. It remained associated with these junctions during the time they migrate down the lateral cell surface, disappear and are replaced by slit diaphragms. The distribution of ZO-1 and the close developmental relationship between the two junctions suggest that the slit diaphragm is a variant of the tight junction that shares with it at least one structural protein and the functional property of defining distinctive plasmalemmal domains. The glomerular epithelium is unique among renal epithelia in that ZO-1 is present, but the intercellular spaces are wide open and no fibrils are seen by freeze fracture. The presence of ZO-1 along slit membranes indicates that expression of ZO-1 alone does not lead to tight junction assembly.  相似文献   

16.
Occludin is a tetraspan integral membrane protein in epithelial and endothelial tight junction (TJ) structures that is projected to have two extracellular loops. We have used peptides emulating central regions of human occludin's first and second loops, termed O-A:101-121 and O-B:210-228, respectively, to examine potential molecular interactions between these two regions of occludin and other TJ proteins. A superficial biophysical assessment of A:101-121 and O-B:210-228 showed them to have dissimilar solution conformation characteristics. Although O-A:101-121 failed to strongly interact with protein components of the human epithelial intestinal cell line T84, O-B:210-228 selectively associated with occludin, claudin-one and the junctional adhesion molecule (JAM)-A. Further, the presence of O-B:210-228, but not O-A:101-121, impeded the recovery of functional TJ structures. A scrambled peptide sequences of O-B:210-228 failed to influence TJ assembly. These studies demonstrate distinct properties for these two extracellular segments of the occludin protein and provide an improved understanding of how specific domains of occludin may interact with proteins present at TJ structures.  相似文献   

17.
18.
Multiple forms of occludin were found in Madin-Darby caninekidney (MDCK) cells. In the absence of cell-to-cell contacts, achievedby incubating cells in low-calcium growth medium, a cluster oflower-molecular-weight (LMW) occludin bands (~65,000-68,000) waspresent in both MDCK I and II cells. On formation of tight junctions,achieved by changing the low-calcium growth medium to normal-calciumgrowth medium, a cluster of higher-molecular-weight (HMW) bands(~72,000-75,000 for MDCK I cells and ~70,000-73,000 forMDCK II cells) was also expressed. The HMW occludin bands could beeliminated by phosphatase treatment. Therefore, the HMW forms ofoccludin appeared to be the hyperphosphorylated product of the LMWforms. These HMW forms were Triton X-100 insoluble, which correlatedwith their localization at the tight junctions. Furthermore, depletionof tight junction-localized occludin by an occludin extracellulardomian peptide (20) correlated with a decrease in the HMW forms ofoccludin. In conclusion, phosphorylation of occludin may be a mechanismby which occludin localization and function are regulated.

  相似文献   

19.
Nuclear localization of the tight junction protein ZO-2 in epithelial cells   总被引:6,自引:0,他引:6  
The tight junction constitutes the major barrier to solute and water flow through the paracellular space of epithelia and endothelia. It is formed by transmembrane proteins and submembranous molecules such as the MAGUKs ZOs. We have previously found that several MAGUKs, including those of the tight (ZO-1, ZO-2, and ZO-3) and septate junction (tamou and Dlg), contain one or two nuclear sorting signals located at their first PDZ and GK domains. Now we show that these proteins also contain a nuclear export signal and focus our study on the nuclear membrane shuttling of ZO-2. In sparse cultures this molecule concentrates at the nucleus in clusters, where it partially colocalizes with splicing factor SC35. Nuclear staining diminishes as the monolayer acquires confluence through a process sensitive to the nuclear export inhibitor leptomycin B. Nuclear localization can be induced by impairing cell-cell contacts, by mechanical injury. ZO-2 that shuttles from the cell periphery into the nucleus is not newly synthesized but originates from a preexistent pool. The movement of this protein is mediated by the actin cytoskeleton.  相似文献   

20.
ZO-1 is a 210-225-kD peripheral membrane protein associated with cytoplasmic surfaces of the zonula occludens or tight junction. A 160- kD polypeptide, designated ZO-2, was found to coimmunoprecipitate with ZO-1 from MDCK cell extracts prepared under conditions which preserve protein associations (Gumbiner, B., T. Lowenkopf, and D. Apatira. 1991. Proc. Natl. Acad. Sci. USA. 88: 3460-3464). We have isolated ZO-2 from MDCK cell monolayers by bulk coimmunoprecipitation with ZO-1 followed by electroelution from preparative SDS-PAGE gel slices. Amino acid sequence information obtained from a ZO-2 tryptic fragment was used to isolate a partial cDNA clone from an MDCK library. The deduced amino acid sequence revealed that canine ZO-2 contains a region that is very similar to sequences in human and mouse ZO-1. This region includes both a 90-amino acid repeat domain of unknown function and guanylate kinase- like domains which are shared among members of the family of proteins that includes ZO-1, erythrocyte p55, the product of the lethal(1)discs- large-1 (dlg) gene of Drosophila, and a synapse-associated protein from rat brain, PSD-95/SAP90. The dlg gene product has been shown to act as a tumor suppressor in the imaginal disc of the Drosophila larva, although the functions of other family members have not yet been defined. A polyclonal antiserum was raised against a unique region of ZO-2 and found to exclusively label the cytoplasmic surfaces of tight junctions in MDCK plasma membrane preparations, indicating that ZO-2 is a tight junction-associated protein. Immunohistochemical staining of frozen sections of whole tissue demonstrated that ZO-2 localized to the region of the tight junction in a number of epithelia, including liver, intestine, kidney, testis, and arterial endothelium, suggesting that this protein is a ubiquitous component of the tight junction. Double- label immunofluorescence microscopy performed on cryosections of heart, a nonepithelial tissue, revealed the presence of ZO-1 but no ZO-2 staining at the fascia adherens, a specialized junction of cardiac myocytes which has previously been shown to contain ZO-1 (Itoh, M., S. Yonemura, A. Nagafuchi, S. Tsukita, and Sh. Tsukita. 1991. J. Cell Biol. 115:1449-1462). Thus it appears that ZO-2 is not a component of the fascia adherens, and that unlike ZO-1, this protein is restricted to the epithelial tight junction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号