首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary

The spider mite, Tetranychus urticae passes through four active stages in its life cycle: larva, protonymph, deutonymph, adult. The duration at 23°C and 40–60% relative humidity is 10–12 days. Each of the movable stages is followed by a resting phase (= chrysalis) where moulting processes are prepared. The general internal anatomy of the developmental stages does not differ from that of the adults. The gonadial rudiment of the female larva is an undifferentiated cell mass situated between the nervous system and the anus. In the nymphochrysalis, development of oocytes starts as indicated by synaptonemal complexes occuring in cells which are interconnected via cytoplasmic bridges. Cells exhibiting extranuclear material appear during the protonymphal stage. The presumptive uterus and vagina are formed during the deutochrysalis stage and consist of an undifferentiated tube, the distal portion of which is lined by a fine cuticle. The ovary of the deutonymph contains different cell types. Oogonia and growing oocytes are found in the cranial germ region. Oocytes, nurse cells and cells with large lobed nuclei can be observed in the caudal previtellogenic region. Oocytes protrude through the ovarian surface and invade ovarian pouches covered only by the basement membrane whereby each is connected to a tri-nucleate nurse cell via a cytoplasmic bridge. Oocytes increase in size but do not form yolk droplets. The uterus and vagina are differentiated during the late deutonymphal stage and copulation may take place as indicated by the presence of sperm in the lumen of the seminal receptacle.

The results are compared to previously published information on the female reproductive system of T. urticae and discussed with reference to co-operation of ovarian cell types and their origin.  相似文献   

2.
The process of yolk protein (YP) uptake by developing oocytes in Drosophila melanogaster has been investigated by immunofluorescent localization of the endocytosis proteins, clathrin, alpha-adaptin and the putative yolk protein receptor (YP receptor). Data suggests that YPs from the follicle cells are trafficked into the oocyte during early stages of vitellogenesis, and that hemolymph YPs are sequestered by nurse cells adjacent to the developing oocyte during late stages of vitellogenesis. Yolk proteins were immunolocalized to both follicle cells and nurse cells during these processes. Diapausing female Drosophila melanogaster undergo a pre-vitellogenic arrest of ovarian development associated with the absence of ovarian alpha-adaptin, clathrin and putative YP receptor. Diapause termination by transfer of whole animals from 11 degrees C to 25 degrees C, or by 20-hydroxyecdysone injection, results in the appearance of immunopositive material in the nurse cells for all three proteins between 12 h and 16 h post upshift and within four days of injection. Immunopositive material was not noted in the follicle cells during diapause termination. In vitro warming of diapausing ovaries, or incubation in the presence of 1 &mgr;M 20-hydroxyecdysone failed to initiate early vitellogenic development suggesting that diapause termination requires factor(s) external to the ovary. Western blotting analysis of extracts of 24 h post-eclosion wild type and ap(56f) females identified putative yolk protein receptor with a molecular weight of 208 kDa and clathrin with a molecular weight of 178 kDa.  相似文献   

3.
Ultrastructural features of the ovary and oogenesis in the polychaete Capitella jonesi (Hartman, '59) have been described. The ovaries are paired, sac-like follicles suspended by mesenteries in the ventral coelom throughout the midbody region of the mature worm. Oogenesis is unsynchronized and occurs entirely within the ovary, where developing gametogenic stages are segregated spatially within a germinal and a growth zone. Multiplication of oogonia and differentiation of oocytes into the late stages of vitellogenesis occur in the germinal region of the ovary, whereas late-stage vitellogenic oocytes and mature eggs are located in a growth zone. Follicle cells envelop the oocytes in the germinal zone of the ovary and undergo hypertrophy and ultrastructural changes that correlate with the onset of vitellogenesis. These changes include the development of extensive arrays of rough ER and numerous Golgi complexes, formation of microvilli along the surface of the ovary, and the initiation of extensive endocytotic activity. Oocytes undergo similar, concomitant changes such as the differentiation of surface microvilli, the formation of abundant endocytotic pits and vesicles along the oolemma, and the appearance of numerous Golgi complexes, cisternae of rough ER, and yolk bodies. Yolk synthesis appears to occur by both autosynthetic and heterosynthetic processes involving the conjoined efforts of the Golgi complex and rough ER of the oocyte and the probable addition of extraovarian (heterosynthetic) yolk precursors. Evidence is presented that implicates the follicle cells in the synthesis of yolk precursors for transport to the oocytes. At ovulation, mature oocytes are released from the overy after the overlying follicle cells apparently withdraw. Bundles of microfilaments within the follicle cells may play a role in this withdrawal process.  相似文献   

4.
In penaeid shrimps, vitellogenin (VTG), the precursor of vitellin, is synthesized in the ovary and hepatopancreas and accumulated in oocytes during ovarian development. In the present study, VTG gene expression levels and hemolymph VTG levels were determined throughout ovarian development in female kuruma prawn, Marsupenaeus japonicus. Hemolymph VTG levels and VTG mRNA levels in the ovary and hepatopancreas were high during vitellogenesis, remained high until final maturation, and then decreased after oviposition. This profile suggests that VTG synthesis activity increases during vitellogenesis and decreases after oviposition. Absence of a significant increase in ovary size in final maturation suggests cessation of yolk accumulation and low activity of VTG synthesis in spite of high VTG mRNA levels. VTG mRNA levels in ovary and hepatopancreas were both highly correlated during vitellogenesis. Thus, their contribution to yolk accumulation seems to be similar. In contrast, VTG mRNA levels in the hepatopancreas increased more slowly at the start of vitellogenesis and declined more sharply after oviposition than in the ovary. This suggests a difference in the regulation of VTG synthesis between the ovary and the hepatopancreas.  相似文献   

5.
The ovaries consist of large number of panoistic ovarioles in the last instar nymph and the adult dragonfly Orthetrum chrysis (Selys). In the nymph the vitellaria are compactly filled with the primary oocytes and the vitellogenesis takes place only in the adult stage. During vitellogenesis oocytes change widely in their shape, size and cytological organisation and their developmental stages can be divided into pre-vitellogenic, early-vitellogenic, vitellogenic, late-vitellogenic and maturation age. PAS-positive material appears first around the germinal vesicle in the early-vitellogenic stage and lateron it migrates towards the periphery. Glycogen appears in the late-vitellogenic stage. DNA is abundantly present in the nuclei of the oocytes during the pre-vitellogenic and completely absent in early-vitellogenic, vitellogenic, late-vitellogenic and maturation stages. It is observed in the nuclei of follicular epithelial cells of all the stages. RNA is abundantly present in cytoplasm of the pre-vitellogenic oocytes but lateron is gradually decreases. During the early-vitellogenic and vitellogenic stages high concentration of RNA in the follicular epithelial cells has been observed. The protein bodies appear first in the interfollicular spaces and towards the periphery of the oocytes just near the enveloping follicular epithelial cells, during the early-vitellogenic stage suggesting the formation of yolk proteins from the haemolymph. In Orthetrum chrysis the sudanophilic bodies appear first in the follicular cells and then lie in the peripheral region of the oocytes suggesting the incorporation of yolk lipid either from the follicular epithelium or from the haemolymph through the follicular epithelium. The phospholipids are synthesised in pre-vitellogenic to the late-vitellogenic stages. In the late-vitellogenic stages the phospholipid granules are present abundantly in the follicular epithelium while in the maturation stage they disappear suggesting their utilisation in the formation of membranes like vitelline and chorion. The neutral fats are present in the form of large number of droplets in the oocytes during the maturation stage.  相似文献   

6.
ABSTRACT Fine structural changes of the ovary and cellular composition of oocyte with respect to ovarian development in the orb-web spider, Nephila clavata were examined by scanning and transmission electron microscopy. Unlike the other arthropods, the ovary of this spider has only two kinds of cells-follicle cells and oocytes. During the ovarian maturation, each oocyte bulges into the body cavity and attaches to surface of the elongated ovarian epithelium through its peculiar short stalk attachments. In the cytoplasm of the developing oocyte two main types of yolk granules, electron-dense proteid yolk and electron-lucent lipid yolk granules, are compactly aggregated with numerous glycogen particles. The cytoplasm of the developing oocyte contains a lot of ribosomes, poorly developed rough endoplasmic reticulum, mitochondria and lipid droplets. These cell organelles, however, gradually degenerate by the later stage of vitellogenesis. During the active vitellogenesis stage, the proteid yolk is very rapidly formed and the oocyte increases in size. However, the micropinocytosis invagination or pinocytotic vesicles can scarcely be recognized, although the microvilli can be found in some space between the oocyte and ovarian epithelium. During the vitellogenesis, the lipid droplets in the cytoplasm of oocytes increase in number, and become abundant in the peripheral cytoplasm close to the stalks. On completion of the yolk formation the vitelline membrane, which is composed of an inner homogeneous electron-lucent component and an outer layer of electron-dense component is formed around the oocyte.  相似文献   

7.
Abstract. The ultrastructural features of the ovary and oogenesis have been described in 6 species of patellid limpets from South Africa. The ovary is a complex organ that is divided radially into numerous compartments or lacunae by plate-like, blind-ended, hollow trabeculae that extend from the outer wall of the ovary to its central lumen. Trabeculae are composed of outer epithelial cells, intermittent smooth muscle bands, and extensive connective tissue. Oocytes arise within the walls of the trabeculae and progressively bulge outward into the ovarian lumen during growth while partially surrounded by squamous follicle cells. During early vitellogenesis, the follicle cells lift from the surface of the underlying oocytes and microvilli appear in the perivitelline space. Follicle cells restrict their contact with the oocytes to digitate foot processes that form desmosomes with the oolamina. When vitellogenesis is initiated, the trabecular epithelial cells hypertrophy and become proteosynthetically active. Yolk synthesis involves the direct incorporation of extraoocytic precursors from the lumen of the trabeculae (hemocoel) into yolk granules via receptor-mediated endocytosis. Lipid droplets arise de novo and Golgi complexes synthesize cortical granules that form a thin band beneath the oolamina. A fibrous jelly coat forms between the vitelline envelope and the overlying follicle cells in all species.  相似文献   

8.
The present study presents the morphology, histology, and the dynamics of vitellogenesis in females of the tick Amblyomma triste. The ovary in this species is of the panoistic type, therefore it lacks nurse cells. It is composed of a layer of epithelial cells that outwardly form the wall of the ovary, but also originate the pedicel, the structure that attaches the oocytes to its external margin, as well the oocytes themselves. In Amblyomma triste, the oocytes develop in four synchronic stages, which differs from the process in other tick species. The classification of the stages of the oocytes was carried out based on the presence of four morphologic characteristics: cytoplasm appearance; site of the germ vesicle; presence, quantity, and constitution of the yolk granules and presence of chorium.  相似文献   

9.
The paired ovaries of young larva of the 3rd instar of Orthezia urticae are filled with numerous germ cell clusters that can be regarded as ovariole anlagen. Germ cells (cystocytes) belonging to one cluster form a rosette, in the centre of which a polyfusome occurs. Staining with rhodamine-phalloidin has revealed that polyfusomes contain numerous microfilaments. The number of cystocytes per cluster is not stable and varies considerably. The ovaries of older larva become elongated with numerous young ovarioles protruding into the body cavity. The ovarioles are not subdivided into the tropharium and vitellarium. In this stage germ cells differentiate into oocytes and trophocytes (nurse cells). The ovaries of adult females are composed of about 20 (Newsteadia floccosa) or 30 (O. urticae) ovarioles. Their trophic chambers contain trophocytes and arrested oocytes. In the vitellarium, at the given moment, only one oocyte develops. It has been observed that after maturation of the first egg the arrested oocytes may develop.  相似文献   

10.
Summary The ovaries of the starfish Asterias rubens were studied histologically and ultrastructurally. The reproductive system in female specimens consists of ten separate ovaries, two in each ray. Each ovary is made up of a rachis with lateral primary and secondary folds: the acini maiores and acini minores. The ovarian wall is composed of an outer and an inner part, separated by the genital coelomic sinus. The ovarian lumen contains oocytes in various phases of oogenesis, follicle cells, nurse cells, phagocytosing cells and steroid-synthesizing cells.Oogenesis is divided into four phases: (i) multiplication phase of oogonia, (ii) initial growth phase of oocytes I, (iii) growth phase proper of oocytes I, and (iv) post-growth phase of oocytes I. The granular endoplasmic reticulum and the Golgi complex of the oocytes appear to be involved in yolk formation, while the haemal system, haemal fluid and nurse cells may also be important for vitellogenesis. The haemal system is discussed as most likely being involved in synchronizing the development of the ovaries during the annual reproductive cycle and in inducing, stimulating and regulating the function of the ovaries.Steroid-synthesizing cells are present during vitellogenesis; a correlation between the presence of these cells and vitellogenesis is discussed.  相似文献   

11.
The structure of the developing oocytes in the ovary of unfed and fed femaleArgas (Persicargas) arboreus is described as seen by scanning (SEM) and transmission (TEM) electron microscopy. The unfed female ovary contains small oocytes protruding onto the surface and its epithelium consists of interstitial cells, oogonia and young oocytes. Feeding initiates oocyte growth through the previtellogenic and vitellogenic phases of development. These phases can be observed by SEM in the same ovary.The surface of isolated, growing oocytes is covered by microvilli which closely contact the basal lamina investing the ovarian epithelium and contains a shallow, circular area with cytoplasmic projections and a deep pit, or micropyle, at the epithelium side. In more advanced oocytes the shell is deposited between microvilli and later completely covers the surface.Transmission EM of growing oocytes in the previtellogenic phase reveals nuclear and nucleolar activity in the emission of dense granules passing into the cytoplasm and the formation of surface microvilli. The cell cytoplasm is rich in free ribosomes and polysomes and contains several dictyosomes associated with dense vesicles and mitochondria which undergo morphogenic changes as growth proceeds. Membrane-limited multivesiculate bodies, probably originating from modified mitochondria, dictyosomes and ribosomal aggregates, are also observed. Rough endoplasmic reticulum is in the form of annulate lamellae. During vitellogenesis, proteinaceous yolk bodies are formed by both endogenous and exogenous sources. The former is involved in the formation of multivesicular bodies which become primary yolk bodies, whereas the latter process involves internalization from the haemolymph through micropinocytosis in pits, vesicles and reservoirs. These fuse with the primary yolk bodies forming large yolk spheres. Glycogen and lipid inclusions are found in the cytoplasm between the yolk spheres.  相似文献   

12.
Summary Polar organisation in the follicles of adult Sarcophaga bullata is reflected in the nurse cell-oocyte axis and in the orientation of the two polar cell pairs in the follicular epithelium. The internal organisation of the nurse cell chamber contributes to polarity but not to dorsoventral asymmetry. Dorsoventral asymmetry is correlated with the eccentric position of the germinal vesicle and the orientation of the polar cell pairs; no other follicle cell specialisations are seen. In an ovary, follicles are preferentially orientated with the dorsal side to the centre of the ovary. Cytoskeletal and some haemolymph proteins are molecular markers of polarity. Thus, in pre-vitellogenic stages, tubulin immunoreactivity is higher in the oocyte than in the nurse cells, actin immunoreactivity is the same over the cystocytes and larval serum proteins are restricted to the poles. During vitellogenesis, both actin and tubulin become more concentrated in the nurse cells and larval serum protein 1 accumulated in the polar cells during border cell migration when yolk polypeptides also accumulate in the oocyte. At the end of vitellogenesis a lipophorin is taken up by the oocyte. No molecular marker of dorsoventral asymmetry was identified.  相似文献   

13.
The objective was to characterize vitellogenin expression in the ovary and hepatopancreas, and to describe the morphometry and ultrastructure of oocytes, in the freshwater prawn Macrobrachium amazonicum at various stages of ovarian development. Five ovarian stages were defined: (I) immature, (II) maturing, (III) mature, (IV) spawned, and (V) reorganized. Ovaries and hepatopancreas were analyzed by immunohistochemistry for vitellogenin expression. Vitellogenin expression in both ovary and hepatopancreas was predominantly widespread, beginning at Stage I, peaking at Stage III, and decreasing in Stages IV and V. Characterization of the ovary included measurement of the following germ cell types: oogonia (OG), and previtellogenic (PV), early vitellogenesis (EV), advanced vitellogenesis (AV), and mature (M) oocytes. Mean ± SD diameter of OG and EV oocytes in Stages I (14.2 ± 5.5 and 119.8 ± 15.7 μm) and II (17.9 ± 4.8 and 114.3 ± 34.6 μm), respectively, were significantly different from that in Stages IV (16.6 ± 4.7 and 107.0 ± 24.6 μm) and V (14.4 ± 4.1 and 101.0 ± 25.2 μm). Both scanning and transmission electron microscopy enabled identification of EV, AV and M oocytes based on the presence of a nucleus, and the organization and distribution of yolk in the cytoplasm. In summary, vitellogenesis occurred both in the hepatopancreas and ovary, with the ovary expressing vitellogenin starting as early as Stage I. This process promoted accumulation of yolk and growth of oocytes, thus favoring sexual maturation of females. This knowledge may be applied to improve production of farmed M. amazonicum.  相似文献   

14.
The morphological features of polychaete ovarian morphology and oogenesis are reviewed. Some basic information on ovarian structure and/or oogenesis is known for slightly more than half of recognized polychaete families although comprehensive studies of oogenesis have been conducted on 0.1 of described species. Relative to other major metazoan groups, ovarian morphology is highly variable in the Polychaeta. While some species appear to lack a defined ovary, most have paired organs that are segmentally repeated to varying degrees depending on the family. Ovaries vary widely in their location but are most frequently associated with the coelomic peritoneum, parapodial connective tissue, or elements of the circulatory system. The structural complexity of the ovary is correlated with the type of oogenesis expressed by the species. In some polychaetes, extraovarian oogenesis occurs in which previtellogenic oocytes are released into the coelom from a simple ovary where differentiation occurs in a solitary fashion or in association with nurse cells or follicle cells. In other species, intraovarian oogenesis occurs in which oocytes undergo vitellogenesis within the ovary, often in association with follicle cells that may provide nutrition. Vitellogenesis probably includes both autosynthetic and heterosynthetic processes; autosynthesis involves the manufacture of yolk bodies via the proteosynthetic organelles of the oocyte whereas heterosynthesis involves the extraovarian production of female-specific yolk proteins that are incorporated into the oocyte through a receptor-mediated process of endocytosis. Variation in the speed of egg production varies widely and appears to be correlated with the vitellogenic mechanism employed. Mature ova display a wide range of egg envelope morphologies that often show some intrafamilial similarities.  相似文献   

15.
16.
嘉庚蛸雌性生殖系统组织学观察   总被引:2,自引:0,他引:2  
对象山港自然海区中的嘉庚蛸(Octopus tankahkeei)雌性生殖系统的组织学结构进行了研究.结果表明,雌性生殖系统由卵巢、输卵管、输卵管腺组成.卵巢单个、球形,内包裹滤泡细胞围成的卵子,输卵管1对,开口于外套腔中部,每条输卵管中部膨大形成圆球状的输卵管腺.近端输卵管内具两瓣蘑菇状突起,上有不规则短指状分枝,突...  相似文献   

17.
The distribution of fibroblast growth factor (FGF) was investigated in developing and matured ovaries of the medaka, Oryzias latipes. In the fry, FGF localized in the cytoplasmic region of all oocytes in the ovary at the pre-vitellogenic stage. Before the initiation of vitellogenesis, it disappeared in the cytoplasmic region and newly appeared around each oocyte, and then it localized around all oocytes in the ovary at the vitellogenic stage. Interestingly, the change in FGF distribution was orderly occurring from the posterior to anterior region of the ovary. In the adult, FGF was detected by immunofluorescence staining around the oocytes. These results suggest that FGF plays a significant role in the initiation of oocyte development through follicle cells, and the expression of FGF is rigidly regulated in the developing ovary of O. latipes.  相似文献   

18.
Ovaries from the spider crab, Libinia emarginata L. were studied to learn more of vitellogenesis in crustaceans. Oogonia and previtellogenic oocytes were found in the core of the ovaries. Vitellogenic oocytes are located more peripherally. Profiles of the endoplasmic reticulum are abundant in the vitellogenic oocytes. The granular and agranular reticulum as well as the Golgi complex are active in yolk synthesis. As vitellogenesis proceeds, yolk precursors are incorporated into the egg by micropinocytosis at the egg surface. Thus, in Libinia, yolk materials appear to be derived from both intra- and extraoocytic sources.  相似文献   

19.
Abstract. Ovarian ultrastructure and oogenesis in two pycnogonid species, Cilunculus armatus and Ammothella biunguiculata , were investigated. The ovary is morphologically and functionally divided into trunk and pedal parts. The former represents the germarium and contains very young germ cells in a pachytene or postpachytene phase, whereas the latter houses developing previtellogenic and vitellogenic oocytes and represents the vitellarium. Intercellular bridges were occasionally found between young (trunk) germ cells. This indicates that in pycnogonids, as in other animal groups, at the onset of oogenesis clusters of germ cells are generated. As nurse cells are absent in the ovaries of investigated species, the clusters must secondarily split into individual oocytes. In the vitellarium, the oocytes are located outside the ovary. Each oocyte is connected to the ovarian tissue by a stalk composed of several somatic cells. The stalk cells directly associated with the oocyte are equipped with irregular projections that reach the oocyte plasma membrane. This observation suggests that the stalk cells may play a nutritive role. The ooplasm of vitellogenic oocytes comprises mitochondria, free ribosomes, stacks of annulate lamellae, active Golgi complexes, and vesicles derived from these complexes. Within the latter, numerous electron-dense bodies are present. We suggest that these bodies contribute to yolk formation.  相似文献   

20.
The establishment and reorganization of intercellular bridges during larval-adult ovarian differentiation is the basis of the syncytial nature of the adult hemipteran telotrophic ovary. The formation, in the late differentiation phase, of groups of closely arranged nurse cell nuclei occupying a common cytoplasm results from membrane fusions. Oocyte-oocyte intercellular bridge systems later are modified to form the trophic cords. The trophic core, which undergoes a restructuring during the late differentiation phase, mediates nurse cell-oocyte interactions in this system. Material, transported to and accumulated by late differentiation phase pre-vitellogenic oocytes, originates from trophic core restructuring and zone III nurse cell production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号