首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Call-Exner bodies are present in ovarian follicles of a range of species including human and rabbit, and in a range of human ovarian tumors. We have also found structures resembling Call-Exner bodies in bovine preantral and small antral follicles. Hematoxylin and eosin staining of single sections of bovine ovaries has shown that 30% of preantral follicles with more than one layer of granulosa cells and 45% of small (less than 650 microns) antral follicles have at least one Call-Exner body composed of a spherical eosinophilic region surrounded by a rosette of granulosa cells. Alcian blue stains the spherical eosinophilic region of the Call-Exner bodies. Electron microscopy has demonstrated that some Call-Exner bodies contain large aggregates of convoluted basal lamina, whereas others also contain regions of unassembled basal-lamina-like material. Individual chains of the basal lamina components type IV collagen (alpha 1 to alpha 5) and laminin (alpha 1, beta 2 and delta 1) have been immunolocalized to Call-Exner bodies in sections of fresh-frozen ovaries. Bovine Call-Exner bodies are presumably analogous to Call-Exner bodies in other species but are predominantly found in preantral and small antral follicles, rather than large antral follicles. With follicular development, the basal laminae of Call-Exner bodies change in their apparent ratio of type IV collagen to laminin, similar to changes observed in the follicular basal lamina, suggesting that these structures have a common cellular origin.  相似文献   

2.
The ultrastructure of different regions of the basal laminae isolated from 5-1/2-6 day-old embryos of the starfish, Pisaster ochraceus , has been described after fixation in the presence of anionic dyes. Isolated basal laminae from all regions of the embryo exhibit a lamina lucida and lamina densa. No lamina fibroreticularis is present. Instead, a coarse meshwork of thick densely stained and thinner intermediately stained fibers is embedded in the lamina densa and extends into the blastocoel forming the extracellular matrix. The coarse meshwork associated with the ectodermal basal lamina consists primarily of thick densely stained fibers with a small number of intermediate ones while that associated with the endodermal one contains much less densely stained material. These structures were morphologically identical to those found in control embryos. Examination of different regions of the endodermal basal lamina shows that the amount of dense material varies from region to region. These differences in dense material may reflect biochemical differences, particularly of proteoglycans, which could provide positional information to migrating mesenchyme cells.  相似文献   

3.
A M Safer 《Acta anatomica》1992,144(3):225-230
The ultrastructural findings on the kidney cells of the gerbil Meriones crassus have shown the presence of finger-like projections emerging from the basal part of the epithelial cells of the proximal convoluted tubules into the matrix of the thick basal laminae and that structure like membrane-bound bodies are commonly seen in continuity with these processes. Such findings would give clues for the possible biogenesis of the membrane-bound bodies from the epithelial cells. Such an origin is consistent with the idea that either all or part of the population of membrane-bound bodies is produced by a process of budding off from the basal cell membrane rather than by extension of an intracytoplasmic precursor through the plasma membrane.  相似文献   

4.
Kidney samples of the camel Camelus dromedarius were aldehyde fixed and glycerol impregnated for ultrathin-section and freeze-fracture studies of the basal lamina. Results obtained show the presence of extracellular membrane-bound bodies within the thick basal lamina of the tubular portion of the nephron. The 10- to 500-nm bodies appear isolated and are found at various levels along the width of a highly structural lattice basal lamina. The bodies are observed either in small groups or as single structures which are invariably surrounded by a clear halo of the basal lamina. In ultrathin sections they appear limited by a typical unit-membrane structure, and their interior may appear empty or may exhibit material of variable electron opacity. Freeze-fracture replicas reveal the limiting membrane of the bodies which appear either as concave or convex structures. Intramembrane particles (IMPs) measuring between 5 and 15 nm are present in some of the bodies, whilst others appear devoid of IMPs. The IMPs are present in both concave and convex surfaces and are usually aggregated into clumps. The region of the basal lamina which contains the membrane-bound bodies is usually granular except in the area immediately surrounding the bodies which corresponds to the clear halo observed in thin sections. Although these basal lamina membrane-bound bodies appear to be similar to matrix vesicles previously described in mineralizing tissues, it seems unlikely that they are involved in calcification. It is possible that the membrane-bound bodies and the highly configurated basal lamina may be related to ionic transport mechanisms which are associated with the high osmolarity of the camel urine.  相似文献   

5.
Suíçmez M  Ulus E 《Folia biologica》2005,53(1-2):95-100
The anatomy, histology and ultrastructure of the digestive tract of Orthrias angorae (Steindachner, 1897) were investigated using light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The histological structure consists of four layers: mucosa, submucosa, muscularis and serosa. The esophageal mucosa consists of undifferentiated basal epithelial cells, mucous cells and surface epithelial cells. It was observed that the J-shaped stomach had a meshwork of folds in the cardiac region, and longitudinal folds in the fundic and pyloric regions. A single layer of columnar cells, PAS positive only in their apical portions, forms the epithelium. The convoluted tube-shape intestine is lined by simple columnar epithelial cells, which have microvilli at the apical surface. The wall of the esophagus and stomach are thicker than that of the intestine because of the thick muscle layer. There were numerous goblet cells in the intestine. There were numerous gastric glands in the submucosa layer ofthe cardiac stomach, but none were present in the pyloric region of the stomach. There were no pyloric caeca between the stomach and intestine. The enterocytes with microvilli contained rough endoplasmic reticulum, ribosomes and rounded bodies, and the gastric cells contained a well-developed Golgi apparatus.  相似文献   

6.
Different morphological phenotypes of follicular basal lamina and of membrana granulosa have been observed. Ten preantral follicles (< 0. 1 mm), and 17 healthy and six atretic antral follicles (0.5-12 mm in diameter) were processed for light and electron microscopy to investigate the relationship the between follicular basal lamina and membrana granulosa. Within each antral follicle, the shape of the basal cells of the membrana granulosa was uniform, and either rounded or columnar. There were equal proportions of follicles 相似文献   

7.
The kidneys of the Mediterranean Gecko, Hemidactylus turcicus (Gekkonidae), were investigated using light and electron microscopy with the primary focus placed on morphology of the sexual segment of the kidney. The nephrons of male H. turcicus are composed of five distinct regions: 1) a renal corpuscle and glomerulus, 2) a proximal convoluted tubule, 3) an intermediate segment, 4) a distal convoluted tubule, and 5) the sexual segment of the kidney/collecting duct. Female H. turcicus is similar but lack a sexual segment of the kidney. The sexual segment of the kidney is hypertrophied during the months of March through August, which corroborates previous reports of reproductive activity. During inactive months, the sexual segment of the kidney is nondiscernable from the collecting ducts. The sexual segment consists of tall columnar epithelial cells with basally positioned nuclei. Perinuclear Golgi complexes and rough endoplasmic reticulum are present. Secretory granules, which fill the apices of the epithelial cells, are electron dense and released into the lumen by a merocrine secretory process. Narrow intercellular canaliculi separate each epithelial cell and are sealed by tight junctions at the luminal aspect. Basally, leukoctyes are observed within the intercellular canaliculi and outside the basal lamina. Mast cells can be found just outside the basal lamina in close association with renal capillaries. The sexual segment of the kidney of H. turcicus is similar to that of three unrelated lizards for which ultrastructure was investigated with secretion mode being the major difference Also, H. turcicus is similar to most other lizards in that complete regression occurs during reproductive inactivity, but differs in this trait from the skink, Scincella lateralis, and most snakes which display a hypertrophied sexual segment of the kidney throughout the entire year. Although some unique similarities appear during the optimization, no direct patterns or directions are observed, and only the molecular based phylogeny resolves the ancestral condition of the Squamata as the sexual segment of the kidney being observed in the distal convoluted tubule, collecting duct, and ureter. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

8.
The retinal pigment epithelium (RPE), the choriocapillaris and Bruch's membrane (complexus basalis) have been studied by light and electron microscopy in the bobtail goanna (Tiliqua rugosa) an Australian diurnal lizard. The RPE consists of a single layer of cuboidal cells which display very deep and tortuous basal (choroidal) infoldings as well as numerous apical (vitreal) processes which interdigitate with the photoreceptor cells. The lateral cell borders are relatively smooth and joined by basally located tight junctions. Internally smooth endoplasmic reticulum is abundant while rough endoplasmic reticulum is not. The RPE cell nucleus is large and vesicular and basally located in the light-adapted state. Polysomes, mitochondria and myeloid bodies are present and widely distributed. Melanosomes are plentiful in the apical region of the epithelial cells in light-adaptation. Bruch's membrane is pentalaminate with the basal lamina of the choriocapillaris being exceptionally thick. The choriocapillaris is a single layer of large-caliber capillaries with thin but only moderately fenestrated endothelium. Numerous dense granules are always present within these endothelial cells.  相似文献   

9.
Spiroplasma kunkelii distribution and infection mechanisms in the intestines and Malpighian tubules of Dalbulus maidis were investigated by transmission electron microscopy. Spiroplasmas were found between microvilli and in endocytic vesicles of the midgut epithelium. At the basal part, cytoplasmic vesicles contained multiple spiroplasmas with tube-like extensions and spiroplasmas accumulated between the laminae rara and densa of the basal lamina. Tip structures of flask-shaped spiroplasmas pierced the lamina densa that was discontinuous in close proximity to spiroplasmas. Spiroplasmas were found in hemolymph, crossed the basal lamina of Malpighian tubule epithelium and accumulated at high numbers in muscle cells that had cytopathogenic changes. S. kunkelii had perithrochous approximately 8nm diameter structures determined to be fimbriae protruding from the cell surface, and similar structures were adhering to the basal lamina of midgut epithelium and to external lamina of muscle cells. Further, spiroplasmas had pili-like appendages at one or both cell poles and appeared to conjugate. This is the first time that fimbriae and pili have been observed in a mollicutes.  相似文献   

10.
Quantitative immunogold localization of Na, K-ATPase along rat nephron.   总被引:1,自引:0,他引:1  
Ultrastructural localization of Na, K-ATPase alpha-subunit along rat nephron segments was investigated quantitatively by immunogold electron microscopy on LR-White ultrathin sections using affinity-purified antibody against alpha-subunit of the enzyme. Ultrathin sections were incubated with the antibody at a saturation level and the number of gold particles bound per micron of the plasma membrane (particle density) of the tubular epithelial cells from the proximal tubule to the collecting duct was determined. In all the tubular epithelial cells, gold particles were located exclusively on the basolateral surface, and no significant binding of gold particles to the apical surface was observed. Distribution of gold particles on the basolateral membranes was quite heterogeneous; lateral membranes and infolded basal membranes were highly labeled, whereas the basal membranes which are in direct contact with the basal lamina were scarcely labeled. The average particle density on the basal surface was highest in the distal straight tubule cells (11.4 units), very high in the distal convoluted tubule cells (9.8 units), intermediate in the proximal tubule cells (3.3 units), in the connecting tubule cells (4.3 units), and in the principal cells of the collecting duct (5.6-3.8 units), low in the thin limb of Henle's loop (1.0 unit), and at the control level in the intercalated cells in the connecting and collecting duct. The relative number of gold particles/mm nephron segment and the relative number of gold particles in the various nephron segments were calculated using quantitative morphological data. The estimated distribution profile of the former was in good agreement with the Na, K-ATPase activity profile in rat nephron, which was determined biochemically with a microenzymatic method.  相似文献   

11.
Rapid restitution of the gastric and intestinal epithelium after acute injury involves emigration of cells from the gastric glands and basal half of the intestinal villi. An intact basal lamina is prerequisite to the restitution process. The present study was performed to determine the effects of acid on the rat gastric and duodenal basal lamina. The basal lamina was denuded in vitro by ultrasonic vibration. The tissue was then immersed in 0.2 M mannitol (control) or in HCl (5-50 mM) for 10 min. Samples of the tissues were examined by transmission and scanning electron microscopy. Some samples were stained with ruthenium red to demonstrate glycosaminoglycans. The lower concentrations of acid (5 and 10 mM) had little or no effect on the structure of the basal lamina. However, exposure to 20 and 50 mM HCl caused extensive damage to the basal lamina and exposed the underlying connective tissue matrix of the lamina propria. Ruthenium red staining demonstrated differences in size and location of glycosaminoglycans within the basal laminae of stomach and intestine. Exposure to acid at concentrations of 20 or 50 mM caused total loss of ruthenium red staining in both intestinal and gastric basal laminae. Exposure to 10 mM acid resulted in loss of the outermost (luminal) layer of anionic sites from the gastric basal lamina. These studies demonstrate that brief exposure to acid, in concentrations which are necessary for the formation of hemorrhagic erosions in the stomach, caused damage to the basal lamina. This damage may impair epithelial restitution and thus account, in part, for the role of acid in ulcerogenesis.  相似文献   

12.
Hemidesmosome formation in vitro   总被引:13,自引:6,他引:7       下载免费PDF全文
Intact, viable sheets of adult rabbit corneal epithelium, 9 mm in diameter, were prepared by the Dispase II method (Gipson, I. K., and S. M. Grill, 1982, Invest. Ophthalmol. Vis. Sci. 23:269-273). The sheets, freed of the basal lamina, retained their desmosomes and stratified epithelial characteristics, but lacked hemidesmosomes (HD). Epithelial sheets were placed on fresh segments of corneal stroma with denuded basal laminae and incubated in serum-free media for 1, 3, 6, 18, or 24 h. Tissue was processed for electron microscopy, and the number of HD/micron membrane, the number of HDs with anchoring fibrils directly across the lamina densa from them, and the number of anchoring fibrils not associated with HDs were counted. After 6 h in culture, the number of newly formed HD was 82% of controls (normal rabbit corneas), and by 24 h the number had reached 95% of controls. At all time periods studied, 80-86% of HDs had anchoring fibrils directly across the lamina densa from them. Anchoring fibrils not associated with HDs decreased with culture time. These data indicate that the sites where anchoring fibrils insert into the lamina densa may be nucleation sites for new HD formation. Corneal epithelial sheets placed on two other ocular basal laminae, Descemet's membrane and lens capsule, had not formed HDs after 24 h in culture. These two laminae do not have anchoring fibrils associated with them. Rabbit epithelial sheets placed on the denuded epithelial basal lamina of rat and human corneas formed new HDs. Thus, at least in these mammalian species, HD formation may involve some of the same molecular components.  相似文献   

13.
The nephron of the one-humped camel Camelus dromedarius was investigated by light and transmission electron microscopy. Besides the many features common to other mammalian kidneys, the nephron of the camel is unique in having an unusually thick basal lamina underlying the epithelial cells of the nephron, the thickest being found in part of the parietal layer of Bowman's capsule and the thin limb of the loop of Henle. In the latter, the membrane usually appears lamellated and contains numerous tiny vesicles. In other parts of the nephron, the basal lamina usually has a homogenous appearance. The possible significance of the thickening of the basal lamina is discussed in relation to the general high renal efficiency of the camel.  相似文献   

14.
The microscopic anatomy and ultrastructure of the body cavity and adjacent organs in the sea spider Nymphon brevirostre Hodge, 1863 (Pycnogonida, Nymphonidae) were examined by transmission electron microscopy. The longitudinal septa subdividing the body cavity are described: (1) Dohrn’s horizontal septum, (2) lateral heart walls, and (3) paired ventral septa consisting of separate cellular bands. The body cavity is a hemocoel, it has no epithelial lining and is only bordered by a basal lamina. The epidermis, heart, and Dohrn’s septum are not separated from each other by basal laminae and may have a common origin. The cellular bands forming the longitudinal ventral septa are not covered with the basal lamina and presumably derive from cells belonging to the hemocoel. The roles of the morphological structures studied for the circulation of hemolymph are discussed. The gonad lies inside Dohrn’s septum, it is covered with its own basal lamina and surrounded by numerous lacunae of the hemocoel entering the septum. The gonad wall is formed with a single layer of epithelium. The same epithelial cells form the gonad stroma. The gonad cavity is not lined with the basal lamina; muscle cells are present in the gonad wall epithelium, thus rendering the lumen similar to a coelomic cavity. Freely circulating cells of two types are found in the hemocoel: small amebocytes containing electronic-dense granules that are similar to granulocytes of other arthropods, as well as hemocytes with large vacuoles of varying structure that are comparable with plasmatocytes; however some of these may be activated granulocytes.  相似文献   

15.
The ducts associated with sperm transport from the testicular lobules to the Wolffian ducts in Ambystoma maculatum were examined with transmission electron microscopy. Based on the ultrastructure and historical precedence, new terminology for this network of ducts is proposed that better represents primary hypotheses of homology. Furthermore, the terminology proposed better characterizes the distinct regions of the sperm transport ducts in salamanders based on anatomy and should, therefore, lead to more accurate comparisons in the future. While developing the above ontology, we also tested the hypothesis that nephrons from the genital kidney are modified from those of the pelvic kidney due to the fact that the former nephrons function in sperm transport. Our ultrastructural analysis of the genital kidney supports this hypothesis, as the basal plasma membrane of distinct functional regions of the nephron (proximal convoluted tubule, distal convoluted tubule, and collecting tubule) appear less folded (indicating decreased surface area and reduced reabsorption efficiency) and the proximal convoluted tubule possesses ciliated epithelial cells along its entire length. Furthermore, visible luminal filtrate is absent from the nephrons of the genital kidney throughout their entire length. Thus, it appears that the nephrons of the genital kidney have reduced reabsorptive capacity and ciliated cells of the proximal convoluted tubule may increase the movement of immature sperm through the sperm transport ducts or aid in the mixing of seminal fluids within the ducts. © J. Morphol., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
Nardi JB  Miklasz SD 《Tissue & cell》1989,21(4):559-567
Monoclonal antibodies (MAbs) raised against wing tissues of Manduca sexta recognize epitopes shared by both hemocytes and basal laminae. During the last larval stadium, the basal lamina of moth wing epithelium forms after hemocytes have migrated into the space adjacent to basal surfaces of epithelial cells. As adult development commences, hemocytes participate in phagocytosis of the same basal lamina; and as dissolution of the basal lamina proceeds (day 2-day 5 post-pupation), wing epithelial cells send forth long basal processes and rearrange within the plane of the epithelium. During this period of cell rearrangement, the immunoreactivity of the basal lamina decreases in concert with an increase in immunoreactive vesicles within hemocytes; and at the ultrastructural level, hemocytes have been observed to engulf fragments of basal lamina. The distribution of immunolabel in the developing moth wing suggests that hemocytes contribute not only to the formation of the wing's basal lamina but also to its breakdown. Since basal laminae are probably important determinants of epithelial form and pattern, hemocytes also contribute to the shaping of epithelial populations.  相似文献   

17.
The morphology of the midgut trunk (MGT) in the penaeid shrimp Sicyonia ingentis was examined by light and scanning and transmission electron microscopy. Although the function of the MGT is poorly understood, it is not involved with the digestion and absorption of nutrients, and it appears to be the surface of a shrimp least protected from penetration by potential pathogens. As described for other decapod crustaceans, the MGT in shrimp is composed of a simple columnar epithelium separated from a layer of connective tissue by a thick basal lamina. Beneath the basal lamina is a previously unreported layer of hemocytes, exclusively of the granulocyte variety, embedded in a matrix continuous with the basal lamina and extending into the connective tissue. This layer was observed in four other species of penaeid shrimp. Granulocytes in circulation can phagocytose and encapsulate foreign material and the granules contain antibacterial molecules, lysosomal enzymes, and prophenoloxidase. We suggest that the granulocytes associated with the basal lamina have matured at this site and are well positioned to fight potential pathogens that have penetrated the epithelial layer of the MGT. A second observation is the presence of clusters of cylinders bound to the nuclear pores of the epithelial cells. The possibility that these clusters are viruses, organelles, or abnormal organelles induced by disease or toxic materials is discussed. These unique particles were observed in S. ingentis but none of the other penaeid shrimp we examined.  相似文献   

18.
In this paper the ultrastructural features of the epithelial-mesenchymal interface in mandibular processes of embryonic chicks have been examined using scanning electron microscopy. Mandibular epithelium is required for the mesenchyme to differentiate as osteoblasts and to deposit the membrane bones of the mandible. The surface morphology of the epithelium changes from the lateral to the medial face of the mandible from rounded cells, each with a central cilium to flattened cells with numerous microvilli. Treatment with trypsin and pancreatin was used to digest the basal lamina so as to separate epithelium from mesenchyme. This exposed a thick, fibrillar basement membrane (reticular lamina), which was thicker underlying the caudal epithelium than under the cephalad epithelium. Addition of collagenase to the trypsin/pancreatin solution degraded some of the basement lamella, especially that underlying epithelium on the caudal portion of each mandibular process. Selective degradation of basement lamella is postulated as one means of regulating inductive epithelial-mesenchymal interactions. EDTA was used to isolate basal laminae on mandibular mesenchyme. SEM was used to confirm the integrity of the basal lamina, its structure, and its association with overlying epithelial cells and underlying basement lamella.  相似文献   

19.
Our goal was to evaluate the role of tyrosine phosphorylation in the complete formation of hemidesmosomes that occurs during development or during remodeling after injury. A corneal organ culture system was used to study hemidesmosome formation as it would occur in an intact tissue. Phosphorylation of the integrin subunit beta 4 and bullous pemphigoid antigen-1 (BPAG-1) was examined, as these proteins are known to play a role in linking the electron-dense plaques along the basal surface with the intermediate filaments to complete the formation of hemidesmosomes. Corneal epithelial sheets were placed on substrata that contained an intact basal lamina or basal laminae that had been either modified or removed. These constructs were incubated for up to 18 h, and hemidesmosome formation was evaluated by using transmission electron microscopy. When epithelial sheets were placed on intact basal laminae and incubated in the presence of the tyrosine kinase inhibitor genistein (200 microM), hemidesmosome formation was impaired. The formation of electron-dense regions was delayed, and no association of intermediate filaments was detected. Results were confirmed by biochemical studies. When the epithelium and underlying proteins were extracted and immunoprecipitated with beta 4 or BPAG-1, tyrosine phosphorylation decreased in the presence of genistein. In addition, the phosphorylation of beta 4 decreased when epithelial sheets were incubated on substrata from which the basal lamina had been removed or altered. Thus, a reduction in phosphorylation of tyrosine residues impairs the formation of mature hemidesmosomes, and substrata that fail to support hemidesmosome formation also demonstrate decreased phosphorylation of tyrosine residues.  相似文献   

20.
Further investigations of the epithelial and mesothelial basal lamina of the duodenum of Xenopus laevis during metamorphosis were performed by means of scanning electron microscopy (SEM) and histochemical techniques using polyethyleneimine (PEI) to demonstrate anionic sites as well as light- and transmission-electron-microscopic methods involving morphometric analysis. The basal lamina of the duodenal epithelial cells was smooth, and it was occasionally curved along the processes of the epithelial cells (stages 56-59). The basal lamina became thicker by folding, and the thickness of the folded basal lamina exceeded 1 micron (stages 60-62). Subsequently, the folded basal lamina disappeared gradually and became almost smooth again and consisted of only one layer (stages 63-66). After removing the epithelium by boric acid, SEM revealed that the small ridges of the basal lamina protruded like a mesh-work into the luminal side, and the luminal surface of the basal lamina became smooth at later stages of the metamorphic climax. The electron-dense granules of PEI-positive material were localized at both sides of the lamina densa at regular intervals (80-100 nm). The basal lamina of the mesothelial cells was almost smooth at stages 56-59 and started to show occasional slight folding. This folding became continuous and deeper (stages 60-62). The folded mesothelial basal lamina disappeared except for the cell-associated basal lamina and became smooth again at later stages of the metamorphic climax (stages 63-66). These morphologic changes of the basal lamina observed in the epithelium and mesothelium may be induced by common factors. We suggest that physical changes in the small intestine involving the shortening and narrowing should be a main factor to cause these changes in the basal lamina. Furthermore, morphometric analysis proposed that the basal lamina becomes more complex by adding newly synthesized basal lamina material, especially in the epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号