首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During this study the frequency of occurrence and dominance of phytophagous and predatory mites harboring seven vegetable crops in Egypt, namely common bean, cowpea, eggplant, okra, squash, sweet pepper and sweet potato during 2017–2018 were investigated to identify predatory mites that might be useful for the biological control of the phytophagous mites. Three phytophagous and nine predatory mite species were surveyed. The two spotted spider mite Tetranychus urticae Koch of the family Tetranychidae was the dominant pest on these vegetables, while phytoseiids Phytoseiulus persimilis (Athias- Henriot), Typhlodromips swirskii (Athias- Henriot) and Euseius scutalis Chant were the dominant predators. The population of the native or indigenous phytoseiid mite fauna in Egypt such as Phytoseiulus persimilis could be considered as a good biocontrol agent and a part of the Integrated Pest Management (IPM) program in the future. Mite fauna of Egypt especially local populations of Phytoseiulus persimilis can be considered for implementation in future Integrated Pest Management (IPM).  相似文献   

2.
The theory of intraguild predation (IGP) largely studies effects on equilibrium densities of predators and prey, while experiments mostly concern transient dynamics. We studied the effects of an intraguild (IG) predator, the bug Orius laevigatus, on the population dynamics of IG-prey, the predatory mite Phytoseiulus persimilis, and a shared prey, the phytophagous two-spotted spider mite Tetranychus urticae, as well as on the performance of cucumber plants in a greenhouse. The interaction of the predatory mite and the spider mite is highly unstable, and ends either by herbivores overexploiting the plant or predators exterminating the herbivores. We studied the effect of IGP on the transient dynamics of this system, and compared the dynamics with that predicted by a simple population-dynamical model with IGP added. Behavioural studies showed that the predatory bug and the predatory mite were both attracted to plants infested by spider mites and that the two predators did not avoid plants occupied by the other predator. Observations on foraging behaviour of the predatory bug showed that it attacks and kills large numbers of predatory mites and spider mites. The model predicts strong effects of predation and prey preference by the predatory bugs on the dynamics of predatory mites and spider mites. However, experiments in which the predatory bug was added to populations of predatory mites and spider mites had little or no effect on numbers of both mite species, and cucumber plant and fruit weight.  相似文献   

3.
Differences in the feeding habits between phytophagous and predatory species can determine distinct ecological interactions between mites and their host plants. Herein, plant–mite networks were constructed using available literature on plant-dwelling mites from Brazilian natural vegetation in order to contrast phytophagous and predatory mite networks. The structural patterns of plant–mite networks were described through network specialization (connectance) and modularity. A total of 187 mite species, 65 host plant species and 646 interactions were recorded in 14 plant–mite networks. Phytophagous networks included 96 mite species, 61 host plants and 277 interactions, whereas predatory networks contained 91 mite species, 54 host plants and 369 interactions. No differences in the species richness of mites and host plants were observed between phytophagous and predatory networks. However, plant–mite networks composed of phytophagous mites showed lower connectance and higher modularity when compared to the predatory mite networks. The present results corroborate the hypothesis that trophic networks are more specialized than commensalistic networks, given that the phytophagous species must deal with plant defenses, in contrast to predatory mites which only inhabit and forage for resources on plants.  相似文献   

4.
Bifenazate is a novel carbazate acaricide discovered by Uniroyal Chemical (now Chemtura Corporation) for the control of phytophagous mites infesting agricultural and ornamental crops. Its acaricidal activity and that of its principal active metabolite, diazene, were characterized. Bifenazate and diazene had high toxicity and specificity both orally and topically to all life stages of Tetranychus urticae and Panonychus citri. Acute poisoning was observed with no temperature dependency. No cross-resistance was found to mites resistant to several other classes of acaricides, such as tebufenpyrad, etoxazole, fenbutatin oxide and dicofol. Bifenazate remained effective for a long time with only about a 10% loss of efficacy on T. urticae after 1 month of application in the field. All stages of development of the predatory mites, Phytoseiulus persimilis and Neoseiulus californicus, survived treatment by both bifenazate and diazene. When adult females of the two predatory mite species were treated with either bifenazate or diazene, they showed a normal level of fecundity and predatory activity in the laboratory, effectively suppressing spider mite population growth. Even when the predators were fed spider mite eggs that had been treated previously with bifenazate, they survived. These findings indicate that bifenazate is a very useful acaricide giving high efficacy, long-lasting activity and excellent selectivity for spider mites. It is, therefore, concluded that bifenazate is an ideal compound for controlling these pest mites.  相似文献   

5.
Plants infested with the spider mite Tetranychus urticae Koch, may indirectly defend themselves by releasing volatiles that attract the predatory mite Phytoseiulus persimilis Athias-Henriot. Several plants from different plant families that varied in the level of spider mite acceptance were tested in an olfactometer. The predatory mites were significantly attracted to the spider mite-infested leaves of all test plant species. No differences in attractiveness of the infested plant leaves were found for predatory mites reared on spider mites on the different test plants or on lima bean. Thus, experience with the spider mite-induced plant volatiles did not affect the predatory mites. Jasmonic acid was applied to ginkgo leaves to induce a mimic of a spider mite-induced volatile blend, because the spider mites did not survive when incubated on ginkgo. The volatile blend induced in ginkgo by jasmonic acid was slightly attractive to predatory mites. Plants with a high degree of direct defence were thought to invest less in indirect defence than plants with a low degree of direct defence. However, plants that had a strong direct defence such as ginkgo and sweet pepper, did emit induced volatiles that attracted the predatory mite. This indicates that a combination of direct and indirect defence is to some extent compatible in plant species.  相似文献   

6.
The efficacy of Neoseiulus californicus (a generalist predatory mite) for the biological control of Tetranychus urticae, was compared to release of Phytoseiulus persimilis (a specialist predatory mite) and an acaricide treatment in sweet pepper plants grown in greenhouse tunnels in a hot and arid climate. To ensure uniform pest populations, spider mites were spread on pepper plants in two seasons; a natural infestation occurred in one season. Predators were released prophylactically and curatively in separate tunnels when plants were artificially infested with spider mites, and at low and moderate spider mite populations when infestations occurred naturally. Although spider mite populations did not establish well the first year, fewer spider mites were recovered with release of N. californicus than with all other treatments. In the second year, spider mites established and the prophylactic release of N. californicus compared favorably with the acaricide-treated plants. In the course of monitoring arthropod populations, we observed a significant reduction in western flower thrips (Frankliniella occidentalis) populations in tunnels treated with N. californicus as compared with non-treated control tunnels. Our field trials validate results obtained from potted-plant experiments and confirm that N. californicus is a superior spider mite predator at high temperatures and low humidities.  相似文献   

7.
The mite Tetranychus evansi Baker & Pritchard (Tetranychidae) probably originated in South America. Because of its importance as a tomato pest in Africa, an extensive project has been conducted to detect potentially effective natural enemies in South America for the classical biological control of the pest in Africa. A search for the natural enemies of T. evansi was conducted in the Province of Tucumán, northwestern Argentina, in December 2004, and this report describes the results. One hundred predatory mites of the family Phytoseiidae referring to 11 species were collected on 11 examined species of solanaceous plants. The most abundant phytoseiid species collected were Neoseiulus californicus (McGregor) and Euseius concordis (Chant). Adults and immatures of those species, as well as of Neoseiulus idaeus Denmark & Muma, Phytoseiulus fragariae Denmark & Schicha and Proprioseiopsis cannaensis (Muma) were found in association with T. evansi, suggesting that they were developing on the pest. However, because of the possible biological differences between populations of a given species, biological studies evaluating T. evansi as a prey for those predators seem desirable.  相似文献   

8.
We examined the potential of a leaf roller to indirectly influence a community of arthropods. Two mite species are the key herbivores on papaya leaves in Hawaii: a spider mite, Tetranychus cinnabarinus Boisduval, and an eriophyid mite, Calacarus flagelliseta, which induces upward curling of the leaf margin at the end of the summer when populations reach high densities. A survey and three manipulative field experiments demonstrated that (1) leaf rolls induce a consistent shift in the spatial distribution of spider mites and their predators, the coccinellid Stethorus siphonulus Kapur, the predatory mites Phytoseiulus spp., and the tangle-web building spider Nesticodes rufipes Lucas; (2) the overall abundance of spiders increases on leaves with rolls; (3) the specialist predators Stethorus and Phytoseiulus inhabit the rolls in response to their spider mite prey; and (4) the spider inhabits the rolls in response to the architecture of the roll itself. This study shows the importance of indirect effects in structuring a terrestrial community of herbivores.  相似文献   

9.
We tested the extent to which resistance of common bean (Phaseolus vulgaris) cultivars to the spider mite Tetranychus urticae parallels the extent to which these plants display indirect defenses via the induced attraction of the predatory mite Phytoseiulus persimilis. First, via field and greenhouse trials on 19 commercial bean cultivars, we selected two spider mite-resistant (Naz and Ks41128) and two susceptible (Akthar and G11867) cultivars and measured the spider mite-induced volatiles and the subsequently induced attraction of predatory mites via olfactory choice assays. The two major volatiles, 4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT) and (Z)-3-hexenyl-acetate, were induced in the resistant but not in the susceptible cultivars. However, uninfested susceptible cultivars emitted these volatiles at levels similar to those of mite-infested resistant cultivars. Significant induction of several minor components was observed for all four cultivars except for the infested-susceptible cultivar G11867. Both, the spider mite-resistant cultivar Naz and the susceptible cultivar G11867, attracted more predatory mites when they were infested. In contrast, spider mites induced increased emission of two major and five minor volatiles in Ks41128, but predatory mites did not discriminate between infested and uninfested plants. Overall, the attraction of predatory mites appeared to correlate positively with the presence of TMTT and (Z)-3-hexenyl acetate and negatively with β-caryophyllene and α-pinene in the bean headspace. Taken together, our data suggest that resistance and attraction of natural enemies via induced volatiles are independent traits. We argue that it should be possible to cross predator-attraction promoting traits into resistant cultivars that lack sufficiently inducible indirect defenses.  相似文献   

10.
The toxicity of selected commercial formulations of neem on Tetranychus urticae Koch (Acari: Tetranychidae) and two predatory mites Euseius alatus De Leon and Phytoseiulus macropilis (Banks) was studied. Topical toxicity was tested with the commercial formulations (Natuneem, Neemseto and Callneem) and extract of neem's seeds at concentration 1%, compared to the standard acaricide abamectin at concentration of 0.3 ml/L and the control treatment (distilled water). Based on the best performance against T. urticae through topical contact, the formulation Neemseto was selected to be evaluated using different concentrations against eggs, and residual and repellent effects on adults of the mites. Egg treatment consisted of dipping eggs into Neemseto dilutions and control treatment for five seconds. In addition, residual and repellent effects of Neemseto for adult mites consisted of using leaf discs dipped into the dilutions for five seconds. The toxicity of Neemseto on eggs and adults was greater for T. urticae compared to the toxicity observed for the predatory mites. Neemseto was repellent for T. urticae and E. alatus when tested at the concentrations of 0.25, 0.50 and 1.0%, and did not affect P. macropilis. Neemseto using all concentrations, while for the predatory mites significant reduction of mite fecundity was only observed at the largest concentrations reduced the fecundity of T. urticae significantly. So Neemseto, among tested neem formulations, performed better against the twospotted spider mite and exhibited relatively low impact against the predatory mites studied.  相似文献   

11.
Gnanvossou D  Hanna R  Dicke M 《Oecologia》2003,135(1):84-90
Carnivorous arthropods exhibit complex intraspecific and interspecific behaviour among themselves when they share the same niche or habitat and food resources. They should simultaneously search for adequate food for themselves and their offspring and in the meantime avoid becoming food for other organisms. This behaviour is of great ecological interest in conditions of low prey availability. We examined by means of an olfactometer, how volatile chemicals from prey patches with conspecific or heterospecific predators might contribute to shaping the structure of predator guilds. To test this, we used the exotic predatory mites Typhlodromalus manihoti and T. aripo, and the native predatory mite Euseius fustis, with Mononychellus tanajoa as the common prey species for the three predatory mite species. We used as odour sources M. tanajoa-infested cassava leaves or apices with or without predators. T. manihoti avoided patches inhabited by the heterospecifics T. aripo and E. fustis or by conspecifics when tested against a patch without predators. Similarly, both T. aripo and E. fustis females avoided patches with con- or heterospecifics when tested against a patch without predators. When one patch contained T. aripo and the other T. manihoti, females of the latter preferred the patch with T. aripo. Thus, T. manihoti is able to discriminate between odours from patches with con- and heterospecifics. Our results show that the three predatory mite species are able to assess prey patch profitability using volatiles. Under natural conditions, particularly when their food sources are scarce, the three predatory mite species might be involved in interspecific and/or intraspecific interactions that can substantially affect population dynamics of the predators and their prey.  相似文献   

12.
The effects of prey mite suitability on several demographic characteristics of phytoseiid predators and the relationship of these effects to the potential of phytoseiid predators to control herbivorous mite populations are well documented. Evidence has also accumulated in the last 20 years demonstrating that phytoseiid predators utilize herbivorous prey mite-induced plant volatiles as olfactory cues in locating their herbivorous mite prey. but less well established is the predictability of reproductive success from the ability of the predators to utilize olfactory cues to locate their prey, and how these processes are related to the success of the predators as biological control agents of the herbivorous mite. In this study, we determined in laboratory no choice experiments, the development, survivorship and fecundity of the two neotropical phytoseiid predators Typhlodromalus manihoti Moraes and T. aripo DeLeon when feeding on three herbivorous mites, including the key prey species Mononychellus tanajoa (Bondar), and the two alternative prey species Oligonychus gossypii (Zacher) and Tetranychus urticae (Koch). Intrinsic rate of increase (rm) of T. aripo was 2.1 fold higher on M. tanajoa as prey compared with T. urticae as prey, while it was almost nil on O. gossypii. For T. manihoti, rm was 2.3 fold higher on M. tanajoa as prey compared with O. gossypii as prey, while reproduction was nil on T. urticae. An independent experiment on odor-related prey preference of the two predator species (Gnanvossou et al. 2002) showed that T. manihoti and T. aripo preferred odors from M. tanajoa-infested leaves to odors from O. gossypii-infested leaves. Moreover, both predator species preferred odors from M. tanajoa-infested leaves over those from T. urticae-infested leaves. As reported here, life history of the two predatory mites matches odor-related prey preference if the key prey species is compared to the two inferior prey species. The implications of our findings for the persistence of T. manihoti and T. aripo and biological control of M. tanajoa in the cassava agroecosystem in Africa are discussed.  相似文献   

13.
Roses on commercial nurseries commonly suffer from attacks by the two-spotted spider mite, Tetranychus urticae, which have a negative influence on growth and quality. The aim of this project is to find natural enemies that are well adapted to roses, and may improve biological control. At different sites such as a plant collection garden, public parks and field boundaries, leaves were sampled from roses to identify the indigenous species of predatory mites. Amblyseius andersoni was amongst other species frequently found, which suggests that this species thrives well on roses. The possibility for biological control of spider mites with A. andersoni was investigated both in container roses outdoors and in glasshouses. In plots of outdoor roses artificially infested with spider mites, the following treatments were carried out: spider mites alone (untreated plot), Amblyseius andersoni Amblyseius andersoni and ice plants, Neoseiulus californicus, Neoseiulus californicus and ice plants. There were four replications of the treatments. The ice plants, Delosperma cooperi, were added to some treatments to supply pollen as extra food for the predatory mites. Natural enemies such as Chrysoperla spp., Conwentzia sp., Orius sp., Stethorus punctillum, and Feltiella acarisuga occurred naturally and contributed to the control of spider mites. After one month the spider mites were eradicated in all treatments. At the end of the trial, predatory mites were collected from all plots for identification. The ratio of Amblyseius andersoni to Neoseiulus californicus was approximately 9:1. There was no obvious effect of the ice plants on the number of predatory mites. On a nursery, where new roses are bred and selected, Amblyseius andersoni was released in three glasshouses after one early treatment with bifenazate against two-spotted spider mite Tetranychus urticae. In two of these glasshouses Neoseiulus californicus was also released. Samples, which were taken in the summer months showed that the spider mites were kept at a very low level. Amblyseius andersoni was found, even if spider mites were absent. Rose plants infested with spider mites, that were brought in to the glasshouses later developed spider mite 'hotspots'. Phytoseiulus persimilis was introduced in the hot spots and contributed to the control along with Neoseiulus californicus, Amblyseius andersoni and naturally occurring Feltiella acarisuga. These observations showed that Amblyseius andersoni is a good candidate for preventing spider mite outbreaks, as it easily survives without spider mites. This predatory mite is able to survive on other food, including thrips and fungal spores.  相似文献   

14.
The predatory mite, Phytoseiulus persimilis is an important biological control agent of herbivorous spider mites. This species is also intensively used in the study of tritrophic effects of plant volatiles in interactions involving plants, herbivores, and their natural enemies. Recently, a novel pathogenic bacterium, Acaricomes phytoseiuli, has been isolated from adult P. persimilis females. This pathogen causes a characteristic disease syndrome with dramatic changes in longevity, fecundity, and behavior. Healthy P. persimilis use spider mite-induced volatiles to locate prey patches. Infection with A. phytoseiuli strongly reduces the attraction to herbivore-induced plant volatiles. The loss of response to herbivore-induced plant volatiles along with the other disease symptoms can have a serious impact on the success of biological control of spider mites. In this study, we have developed a molecular tool (PCR) to detect the pathogenic bacterium in individual predatory mites. PCR primers specific for A. phytoseiuli were developed based on 16S ribosomal DNA of the bacterium. The PCR test was validated with DNA extracted from predatory mites that had been exposed to A. phytoseiuli. A survey on different P. persimilis populations as well as other predatory mite species from several companies that rear predatory mites for biological control revealed that the disease is widespread in Europe and is restricted to P. persimilis. The possibility that the predatory mites get infected via their prey Tetranychus urticae could be eliminated since the PCR test run on prey gave a negative result.  相似文献   

15.
Although it is well established that the predatory mite Phytoseiulus persimilis Athias-Henriot responds to odour emanating from leaves infested by its phytophagous prey, the two-spotted spider mite Tetranychus urticae Koch, little is known of the behavioural mechanisms elicited by odour perception and how they contribute to finding the prey. In this paper the influence of prey-related odour on orientation to wind direction is discussed. It was analysed by observing the predator's walking paths in still air and in an air stream uniformly permeated either with or without prey-related odour stimuli. The results show that well-fed predator females move upwind in presence of these stimuli, but downwind otherwise. Starved predators always move upwind. The anemotactic responses observed are therefore both odour-conditioned and (feeding) state-dependent.In an attempt to explain these responses it is argued that the anemotactic responses of well-fed predators may contribute to arrestment within the area marked by a cluster of prey-colonized leaves. The anemotactic responses of starved predators may help them to find clusters of spider mite colonies located upwind. Why predatory mites also move upwind in absence of prey-related odour stimuli, is a question that remains to be answered.  相似文献   

16.
Yan  Jingyi  Zhang  Bo  Li  Guiting  Xu  Xuenong 《BioControl》2021,66(6):803-811

The symbiotic bacterial communities of phytophagous arthropods are affected by host species and feeding habits, but such effects have been poorly studied in natural enemies. Here, we investigated the entire bacterial microbiome of two species of predatory mites, Neoseiulus californicus and Neoseiulus barkeri, feeding on three types of diets (artificial diet, pollen and their natural prey, the spider mite Tetranychus urticae) by high-throughput sequencing of the 16S rRNA gene. We found that the bacterial diversity of predatory mites feeding on artificial diet was significantly different from pollen and spider mite feeding groups in both N. californicus and N. barkeri, while bacterial diversity also differed strikingly between the two species even when feeding on the same artificial diet. This finding suggests that the bacterial community of predatory mites is determined by both species and diet. Alphaproteobacteria and Gammaproteobacteria were the two dominant bacterial classes in both predatory mite species, except for N. californicus feeding on artificial diet. The bacterium Bosea sp. was detected in all samples as the core microbial species in predatory mites. Additionally, we discuss whether Bradyrhizobiaceae and Rhodobacteraceae bacteria could be used as probiotics in the artificial diet of N. californicus for better mass rearing.

  相似文献   

17.
The toxicities of the herbicide glufosinate-ammonium to three predatory insect and two predatory mite species of Tetranychus urticae Koch were determined in the laboratory by the direct contact application. At a concentration of 540 ppm (a field application rate for weed control in apple orchards), glufosinate-ammonium was almost nontoxic to eggs of Amblyseius womersleyi Schicha, Phytoseiulus persimilis Athias-Henriot, and T. urticae but highly toxic to nymphs and adults of these three mite species, indicating that a common mode of action between predatory and phytophagous mites might be involved. In tests with predatory insects using 540 ppm, glufosinate-ammonium revealed little or no harm to larvae and pupae of Chrysopa pallens Rambur but was slightly harmful to eggs (71.2% mortality), nymphs (65.0% mortality), and adults (57.7% mortality) of Orius strigicollis Poppius. The herbicide showed no direct effect on eggs and adults of Harmonia axyridis (Pallas) but was harmful, slightly harmful, and harmless to first instars (100% mortality), fourth instars (51.1% mortality), and pupae (24.5% mortality), respectively. The larvae and nymphs of predators died within 12 h after treatment, suggesting that the larvicidal and nymphicidal action may be attributable to a direct effect rather than an inhibitory action of chitin synthesis. On the basis of our data, glufosinate-ammonium caused smaller effects on test predators than on T. urticae with the exception of P. persimilis, although the mechanism or cause of selectivity remains unknown. Glufosinate-ammonium merits further study as a key component of integrated pest management.  相似文献   

18.
Efficacy of rosemary, Rosmarinus officinalis L., essential oil was assessed against twospotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), as well as effects on the tomato, Lycopersicum esculatum Mill., host plant and biocontrol agents. Laboratory bioassay results indicated that pure rosemary oil and EcoTrol (a rosemary oil-based pesticide) caused complete mortality of spider mites at concentrations that are not phytotoxic to the host plant. The predatory mite Phytoseiulus persimilis Athias-Henriot is less susceptible to rosemary oil and EcoTrol than twospotted spider mite both in the laboratory and the greenhouse. Rosemary oil repels spider mites and can affect oviposition behavior. Moreover, rosemary oil and rosemary oil-based pesticides are nonpersistent in the environment, and their lethal and sublethal effects fade within 1 or 2 d. EcoTrol is safe to tomato foliage, flowers, and fruit even at double the recommended label rate. A greenhouse trial indicated that a single application of EcoTrol at its recommended label rate could reduce a twospotted spider mite population by 52%. At that rate, EcoTrol did not cause any mortality in P. persimilis nor did it affect their eggs. In general, EcoTrol was found to be a suitable option for small-scale integrated pest management programs for controlling twospotted spider mites on greenhouse tomato plants.  相似文献   

19.
This study was conducted to investigate phytophagous and predatory mites associated with vegetable plants in Riyadh, Saudi Arabia. Eight phytophagous and 10 predacious mites were collected from 14 species of vegetable crops covering five major production localities. Out of these 18 mite species, 13 species are new to the mite fauna of Saudi Arabia. In addition, the two species, Tenuipalpus punicae and Agistemus exsertus, are reported for the first time on vegetable crops in Saudi Arabia. For each mite species found, notes on host plant association and occurrence period are given. An illustrated key for the identification of the 18 mite species reported in this study is provided and this can be used to improve the IPM programs by applying the local natural predatory mites in controlling mite pests in Saudi Arabia.  相似文献   

20.
We studied the induced response of tomato plants to the green strain and the red strain of the spider mite Tetranychus urticae. We focused on the olfactory response of the predatory mite Phytoseiulus persimilis to volatiles from T. urticae-infested tomato leaves in a Y-tube olfactometer. Tomato leaves attracted the predatory mites when slightly infested with the red strain, or moderately or heavily infested with the green strain. In contrast, neither leaves that were slightly infested with green-strain mites, nor leaves that were moderately or heavily infested with the red strain attracted the predators. We discuss the specific defensive responses of tomato plants to each of the two strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号