首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elevated levels of prostaglandins such as PGE2 in inflamed gingiva play a significant role in the tissue destruction caused by periodontitis, partly by targeting local fibroblasts. Only very few studies have shown that PGE2 inhibits the proliferation of a gingival fibroblast (GF) cell line, and we expanded this research by using primary human GFs (hGFs) and looking into the mechanisms of the PGE2 effect. GFs derived from healthy human gingiva were treated with PGE2 and proliferation was assessed by measuring cell number and DNA synthesis and potential signaling pathways were investigated using selective activators or inhibitors. PGE2 inhibited the proliferation of hGFs dose‐dependently. The effect was mimicked by forskolin (adenylate cyclase stimulator) and augmented by IBMX (a cAMP‐breakdown inhibitor), pointing to involvement of cAMP. Indeed, PGE2 and forskolin induced cAMP generation in these cells. Using selective EP receptor agonists we found that the anti‐proliferative effect of PGE2 is mediated via the EP2 receptor (which is coupled to adenylate cyclase activation). We also found that the effect of PGE2 involved activation of Epac (exchange protein directly activated by cAMP), an intracellular cAMP sensor, and not PKA. While serum increased the amount of phospho‐ERK in hGFs by ~300%, PGE2 decreased it by ~50%. Finally, the PGE2 effect does not require endogenous production of prostaglandins since it was not abrogated by two COX‐inhibitors. In conclusion, in human gingival fibroblasts PGE2 activates the EP2—cAMP—Epac pathway, reducing ERK phosphorylation and inhibiting proliferation. This effect could hamper periodontal healing and provide further insights into the pathogenesis of inflammatory periodontal disease. J. Cell. Biochem. 108: 207–215, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
3.
TNF is unusual among the death receptor ligands in being able to induce either apoptotic or necrotic cell death. We have observed that in WEHI 164 fibrosarcoma, cells the mode of TNF-induced cell death is dependent on the stage of the cell cycle. Cells arrested in G(0)/G(1) undergo necrosis, while those progressing through the cell cycle undergo apoptosis. TNF induces caspase activity in both settings, and the broad spectrum caspase inhibitor zVAD-fmk inhibits this activity and blocks both TNF-induced apoptosis and necrosis. Inhibition of oxygen radical accumulation does not block cytotoxicity. The presence and activation of specific caspases were examined by Western blotting. The procaspase-8a isoform was down-regulated in proliferating cells. Procaspases-8b and -7 were cleaved during TNF-induced apoptosis but not necrosis. Thus, a different pattern of caspase expression and activation occurs dependent on the cell cycle and which may determine the mode of cell death.  相似文献   

4.
Death ligands not only induce apoptosis but can also trigger necrosis with distinct biochemical and morphological features. We recently showed that in L929 cells CD95 ligation induces apoptosis, whereas TNF elicits necrosis. Treatment with anti-CD95 resulted in typical apoptosis characterized by caspase activation and DNA fragmentation. These events were barely induced by TNF, although TNF triggered cell death to a similar extent as CD95. Surprisingly, whereas the caspase inhibitor zVAD prevented CD95-mediated apoptosis, it potentiated TNF-induced necrosis. Cotreatment with TNF and zVAD was characterized by ATP depletion and accelerated necrosis. To investigate the mechanisms underlying TNF-induced cell death and its potentiation by zVAD, we examined the role of poly(ADP-ribose)polymerase-1 (PARP-1). TNF but not CD95 mediated PARP activation, whereas a PARP inhibitor suppressed TNF-induced necrosis and the sensitizing effect of zVAD. In addition, fibroblasts expressing a noncleavable PARP-1 mutant were more sensitive to TNF than wild-type cells. Our results indicate that TNF induces PARP activation leading to ATP depletion and subsequent necrosis. In contrast, in CD95-mediated apoptosis caspases cause PARP-1 cleavage and thereby maintain ATP levels. Because ATP is required for apoptosis, we suggest that PARP-1 cleavage functions as a molecular switch between apoptotic and necrotic modes of death receptor-induced cell death.  相似文献   

5.
6.
7.
8.
Tumor necrosis factor alpha (TNF) plays an important role in mediating hepatocyte injury in various liver pathologies. TNF treatment alone does not cause the death of primary cultured hepatocytes, suggesting other factors are necessary to mediate TNF-induced injury. In this work the question of whether reactive oxygen species can sensitize primary cultured hepatocytes to TNF-induced apoptosis and necrosis was investigated. Sublethal levels of H(2)O(2), either as bolus doses or steady-state levels generated by glucose oxidase, were found to sensitize cultured hepatocytes to TNF-induced apoptosis. High levels of H(2)O(2) also triggered necrosis in hepatocytes regardless of whether TNF was present. Similarly, antimycin, a complex III inhibitor that increases reactive oxygen species generation from mitochondria, sensitized hepatocytes to TNF-induced apoptosis at low doses but caused necrosis at high doses. Redox changes seem to be important in sensitizing primary hepatocytes, because diamide, a thiol-oxidizing agent, and 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), an inhibitor of GSSG reductase, also increased TNF-induced apoptosis in cultured primary hepatocytes at sublethal doses. High doses of diamide and BCNU predominantly triggered necrotic cell death. Agents that sensitized hepatocytes to TNF-induced apoptosis -- H(2)O(2), antimycin, diamide, BCNU -- all caused a dramatic fall in the GSH/GSSG ratio. These redox alterations were found to inhibit TNF-induced IkappaB-alpha phosphorylation and NF-kappaB translocation to the nucleus, thus presumably inhibiting expression of genes necessary to inhibit the cytotoxic effects of TNF. Taken together, these results suggest that oxidation of the intracellular environment of hepatocytes by reactive oxygen species or redox-modulating agents interferes with NF-kappaB signaling pathways to sensitize hepatocytes to TNF-induced apoptosis. The TNF-induced apoptosis seems to occur only in a certain redox range -- in which redox changes can inhibit NF-kappaB activity but not completely inhibit caspase activity. The implication for liver disease is that concomitant TNF exposure and reactive oxygen species, either extrinsically generated (e.g., nonparenchymal or inflammatory cells) or intrinsically generated in hepatocytes (e.g., mitochondria), may act in concert to promote apoptosis and liver injury.  相似文献   

9.
Tumour necrosis factor-alpha (TNF) has a variety of cellular effects including apoptotic and necrotic cytotoxicity. TNF activates a range of kinases, but their role in cytotoxic mechanisms is unclear. HeLa cells expressing elevated type II 75 kDa TNF receptor (TNFR2) protein, analysed by flow cytometry and Western analysis, showed altered c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38MAPK; but not MAPK) protein content and activation. There was greater JNK activation, but reduced p38MAPK activation in dying cells compared to those still to enter TNF-induced apoptosis. Moreover, cells displaying more rapid apoptosis possess higher levels of type I 55 kDa TNFR1 receptor isoform, but less TNFR2. These findings reveal differential kinase activation in TNF-induced apoptotic death.  相似文献   

10.
Trimeric tumor necrosis factor (TNF) binding leads to recruitment of TRADD to TNFR1. In current models, TRADD recruits RIP, TRAF2, and FADD to activate NF-kappaB, Jun N-terminal protein kinase (JNK), and apoptosis. Using stable short-hairpin RNA (shRNA) knockdown (KD) cells targeting these adaptors, TNF death-inducing signaling complex immunoprecipitation demonstrates competitive binding of TRADD and RIP to TNFR1, whereas TRAF2 recruitment requires TRADD. Analysis of KD cells indicates that FADD is necessary for Fas-L- or TRAIL- but not TNF-induced apoptosis. Interestingly, TRADD is dispensable, while RIP is required for TNF-induced apoptosis in human tumor cells. TRADD is required for c-Jun phosphorylation upon TNF exposure. RIP KD abrogates formation of complex II following TNF exposure, whereas TRADD KD allows efficient RIP-caspase 8 association. Treatment with TRAIL also induces formation of a complex II containing FADD, RIP, IKKalpha, and caspase 8 and 10, leading to activation of caspase 8. Our data suggest that TNF triggers apoptosis in a manner distinct from that of Fas-L or TRAIL.  相似文献   

11.
The major inducible heat shock protein Hsp72 has been shown to protect cells from certain apoptotic stimuli. Here we investigated the mechanism of Hsp72-mediated protection from tumor necrosis factor (TNF)-induced apoptosis of primary culture of IMR90 human fibroblasts. Hsp72 temporarily blocked apoptosis in response to TNF and permanently protected cells from heat shock. An Hsp72 mutant (Hsp72 Delta EEVD) with a deletion of the four C-terminal amino acids, which are essential for the chaperone function, blocked TNF-induced apoptosis in a manner similar to that of normal Hsp72 but did not inhibit heat shock-induced death. Therefore, the chaperone activity of Hsp72 is dispensable for suppression of TNF-induced apoptosis but is required for protection from heat shock. In fibroblasts derived from Bid knockout mice, similar temporal inhibition of TNF-induced apoptosis was seen. In these cells neither normal Hsp72 nor Hsp72 Delta EEVD conferred additional protection from apoptosis, suggesting that Hsp72 specifically affects Bid-dependent but not Bid-independent apoptotic pathways. Furthermore, both normal Hsp72 and Delta Hsp72EEVD inhibited Bid activation and downstream events, including release of cytochrome c, activation of caspase 3, and cleavage of poly-ADP-ribose polymerase. Both Hsp72 and Delta Hsp72EEVD blocked activation of the stress kinase c-jun N-terminal kinase (JNK) by TNF, and specific inhibition of JNK similarly temporarily blocked Bid activation and the downstream apoptotic events. These data strongly suggest that in TNF-induced apoptosis, Hsp72 specifically interferes with the Bid-dependent apoptotic pathway via inhibition of JNK.  相似文献   

12.
Recent studies strongly suggest an active involvement of the c-Jun N-terminal kinase (JNK) signaling pathway in tumor necrosis factor (TNF)-induced apoptosis. The direct evidence for the role of JNK and its isoforms has been missing and the mechanism of how JNK actually could facilitate this process has remained unclear. In this study, we show that Jnk2-/- primary mouse embryonic fibroblasts (pMEFs) exhibit resistance towards TNF-induced apoptosis as compared to corresponding wild-type and Jnk1-/- pMEFs. JNK2-deficient pMEFs could be resensitized to TNF via retroviral transduction of any of the four different JNK2 splicing variants. Jnk2-/- pMEFs displayed deficient and delayed effector caspase activation as well as impaired cytosolic cystein cathepsin activity: processes that both were needed for efficient TNF-induced apoptosis in pMEFs. Our work demonstrates that JNK has a central role in the promotion of TNF-induced apoptosis in pMEFs, and that the JNK2 isoform can regulate both mitochondrial and lysosomal death pathways in these cells.  相似文献   

13.
In most cell types, tumor necrosis factor (TNF) induces a transient activation of the JNK pathway. However, in NFkappaB-inhibited cells, TNF stimulates also a second sustained phase of JNK activation, which has been implicated in cell death induction. In the present study, we have analyzed the relationship of cell death induction, caspase activity, JNK, and NFkappaB stimulation in the context of TNF signaling in four different cellular systems. In all cases, NFkappaB inhibition enhanced TNF-induced cell death and primed most, but not all, cells for sustained JNK activation. The caspase inhibitor Benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethyl ketone (Z-VAD-fmk) and overexpression of the antiapoptotic proteins FLIP-L and Bcl2 differentially blocked transient and sustained JNK activation in NFkappaB-inhibited KB and HaCaT cells, indicating that the two phases of TNF-induced JNK activation occur at least in these cellular models by different pathways. Although the broad range caspase inhibitor Z-VAD-fmk and the antioxidant butylated hydroxyanisole interfered with TNF-induced cell death to a varying extent in a cell type-specific manner, inhibition of JNK signaling had no or only a very moderate effect. Notably, the JNK inhibitory effect of neither Z-VAD-fmk nor butylated hydroxyanisole was strictly correlated with the capability of these compounds to rescue cells from TNF-induced cell death. Thus, sustained JNK activation by TNF has no obligate role in TNF-induced cell death and is mediated by caspases and reactive oxygen species in a cell type-specific manner.  相似文献   

14.
The present study tested the effects of local injection of IL-1 and TNF soluble receptors on a periodontal wound-healing model in nonhuman primates. In this model, periodontal lesions were developed for 16 wk, followed by open flap surgery. Starting at the time of surgery, groups of animals received localized injections of both soluble cytokine receptors or else PBS three times per week for 3, 14, or 35 days. Periodontal wound healing was analyzed for each group at the end of the treatment regimen. Fourteen days after surgery, a significant decrease was observed between the animals treated with soluble receptors and the untreated group with respect to recruitment of inflammatory cells in deep gingival connective tissue. Concurrent apoptosis of inflammatory cells in those tissues increased significantly in treated animals compared with untreated animals. All other outcome parameters of periodontal wound healing were likewise significantly improved in treated animals compared with untreated animals. In marked contrast, however, 35 days after surgery, there was a significant increase in the number of inflammatory cells that had infiltrated into deep gingival connective tissue in treated compared with untreated animals. Outcome parameters of periodontal wound healing worsened in treated animals when compared with untreated. These results indicate that proinflammatory cytokines may play different functional roles in early vs late phases of periodontal wound healing. Short-term blockade of IL-1 and TNF may facilitate periodontal wound healing, whereas prolonged blockade may have adverse effects.  相似文献   

15.
Chondrocyte apoptosis can be an important contributor to cartilage degeneration, thereby making it a potential therapeutic target in articular diseases. To search for new approaches to limit chondrocytic cell death, we investigated the requirement of polyamines for apoptosis favored by tumor necrosis factor-alpha (TNF), using specific polyamine biosynthesis inhibitors in human chondrocytes. The combined treatment of C-28/I2 chondrocytes with TNF and cycloheximide (CHX) resulted in a prompt effector caspase activation and internucleosomal DNA fragmentation. Pre-treatment of chondrocytes with alpha-difluoromethylornithine (DFMO), an ornithine decarboxylase (ODC) inhibitor, markedly reduced putrescine and spermidine content as well as the caspase-3 activation and DNA fragmentation induced by TNF and CHX. DFMO treatment also inhibited the increase in effector caspase activity provoked by TNF plus MG132, a proteasome inhibitor. DFMO decreased caspase-8 activity and procaspase-8 content, an apical caspase essential for TNF-induced apoptosis. Although DFMO increased the amount of active, phosphorylated Akt, inhibitors of the Akt pathway failed to restore the TNF-induced increase in caspase activity blunted by DFMO. DFMO also reduced the increase in caspase activity induced by staurosporine, but in this case Akt inhibition prevented the DFMO effect. Pre-treatment with CGP 48664, an S-adenosylmethionine decarboxylase (SAMDC) inhibitor markedly reduced spermidine and spermine levels, and provoked effects similar to those caused by DFMO. Finally DFMO was effective even in primary osteoarthritis (OA) chondrocyte cultures. These results suggest that the intracellular depletion of polyamines in chondrocytes can inhibit both the death receptor pathway by reducing the level of procaspase-8, and the apoptotic mitochondrial pathway by activating Akt.  相似文献   

16.
17.
Ras signaling in tumor necrosis factor-induced apoptosis.   总被引:5,自引:0,他引:5       下载免费PDF全文
Tumor necrosis factor (TNF) exerts cytotoxicity on many types of tumor cells but not on normal cells. The molecular events leading to cell death triggered by TNF are still poorly understood. Our previous studies have shown that enforced expression of an activated H-ras oncogene converted non-tumorigenic, TNF-resistant C3H 10T1/2 fibroblasts into tumorigenic cells that also became very sensitive to TNF-induced apoptosis. This finding suggested that Ras activation may play a role in TNF-induced apoptosis. In this study we investigated whether Ras activation is an obligatory step in TNF-induced apoptosis. Introduction of two different molecular antagonists of Ras, the rap1A tumor suppressor gene or the dominant-negative rasN17 gene, into H-ras-transformed 10TEJ cells inhibited TNF-induced apoptosis. Similar results were obtained with L929 cells, a fibroblast cell line sensitive to TNF-induced apoptosis, which does not have a ras mutation. While Ras is constitutively activated in TNF-sensitive 10TEJ cells, TNF treatment increased Ras-bound GTP in TNF-sensitive L929 cells but not in TNF-resistant 10T1/2 cells. Moreover, RasN17 expression blocked TNF-induced Ras-GTP formation in L929 cells. These results demonstrate that Ras activation is required for TNF-induced apoptosis in mouse fibroblasts.  相似文献   

18.
The role of p38 mitogen-activated protein kinase (MAPK) in apoptosis is a matter of debate. Here, we investigated the involvement of p38 MAPK in endothelial apoptosis induced by tumor necrosis factor alpha (TNF). We found that activation of p38 MAPK preceded activation of caspase-3, and the early phase of p38 MAPK stimulation did not depend on caspase activity, as shown by pretreatment with the caspase inhibitors z-Val-Ala-Asp(OMe)-fluoromethylketone (zVAD-fmk) and Boc-Asp(OMe)-fluoromethylketone (BAF). The p38 MAPK inhibitor SB203580 significantly attenuated TNF-induced apoptosis in endothelial cells, suggesting that p38 MAPK is essential for apoptotic signaling. Furthermore, we observed a time-dependent increase in active p38 MAPK in the mitochondrial subfraction of cells exposed to TNF. Notably, the level of Bcl-x(L) protein was reduced in cells undergoing TNF-induced apoptosis, and this reduction was prevented by treatment with SB203580. Immunoprecipitation experiments revealed p38 MAPK-dependent serine-threonine phosphorylation of Bcl-x(L) in TNF-treated cells. Exposure to lactacystin prevented both the downregulation of Bcl-x(L) and activation of caspase-3. Taken together, our results suggest that TNF-induced p38 MAPK-mediated phosphorylation of Bcl-x(L) in endothelial cells leads to degradation of Bcl-x(L) in proteasomes and subsequent induction of apoptosis.  相似文献   

19.
Blockage of either nuclear factor-kappaB (NF-kappaB) or Akt sensitizes cancer cells to TNF-induced apoptosis. In this study, we investigated the undetermined effect of concurrent blockage of these two survival pathways on TNF-induced cytotoxicity in lung cancer cells. The results show that Akt contributes to TNF-induced NF-kappaB activation in lung cancer cells through regulating phosphorylation of the p65/RelA subunit of NF-kappaB. Although individually blocking IKK or Akt partially suppressed TNF-induced NF-kappaB activation, concurrent suppression of these pathways completely inhibited TNF-induced NF-kappaB activation and downstream anti-apoptotic gene expression, and synergistically potentiated TNF-induced cytotoxicity. Moreover, suppression of Akt inhibited the Akt-mediated anti-apoptotic pathway through dephosphorylation of BAD. These results indicate that concurrent suppression of NF-kappaB and Akt synergistically sensitizes TNF-induced cytotoxicity through blockage of distinct survival pathways downstream of NF-kappaB and Akt, which may be applied in lung cancer therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号